Keywords: system of functions orthogonal in the Sobolev system, Walsh system.
@article{DEMR_2021_15_a3,
author = {M. G. Magomed-Kasumov and S. R. Magomedov},
title = {Fast {Fourier} transform in a system of functions that are orthogonal in the sense of {Sobolev} and generated by the {Walsh} system},
journal = {Daghestan Electronic Mathematical Reports},
pages = {55--66},
year = {2021},
number = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2021_15_a3/}
}
TY - JOUR AU - M. G. Magomed-Kasumov AU - S. R. Magomedov TI - Fast Fourier transform in a system of functions that are orthogonal in the sense of Sobolev and generated by the Walsh system JO - Daghestan Electronic Mathematical Reports PY - 2021 SP - 55 EP - 66 IS - 15 UR - http://geodesic.mathdoc.fr/item/DEMR_2021_15_a3/ LA - ru ID - DEMR_2021_15_a3 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %A S. R. Magomedov %T Fast Fourier transform in a system of functions that are orthogonal in the sense of Sobolev and generated by the Walsh system %J Daghestan Electronic Mathematical Reports %D 2021 %P 55-66 %N 15 %U http://geodesic.mathdoc.fr/item/DEMR_2021_15_a3/ %G ru %F DEMR_2021_15_a3
M. G. Magomed-Kasumov; S. R. Magomedov. Fast Fourier transform in a system of functions that are orthogonal in the sense of Sobolev and generated by the Walsh system. Daghestan Electronic Mathematical Reports, no. 15 (2021), pp. 55-66. http://geodesic.mathdoc.fr/item/DEMR_2021_15_a3/
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka. Gl. red. fiz.-mat. lit., Moskva, 1987, 344 pp. | MR
[2] Magomed-Kasumov M. G., “Sistema funktsii, ortogonalnaya v smysle Soboleva i porozhdennaya sistemoi Uolsha”, Matem. zametki, 2019, no. 105, 545–552 | MR | Zbl
[3] Sharapudinov I. I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4 (448) (2019), 87–164 | MR | Zbl
[4] Sharapudinov I. I., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda, i zadacha Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differentsialnye uravneniya, 54:12 (2018), 1645–1662 | Zbl
[5] Sharapudinov I. I., “Ortogonalnye po Sobolevu sistemy funktsii i zadacha Koshi dlya ODU.”, Izv. RAN. Ser. matem, 2019, no. 83, 204–226 | Zbl