On continuous periodic solutions of the Beltrami equation in a half-plane
Daghestan Electronic Mathematical Reports, no. 14 (2020), pp. 30-37
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we describe a general procedure for the derivation of the homogenized equation for the Beltrami equation.
Keywords:
Beltrami equation, homogenization, method of asimptotic expansions.
@article{DEMR_2020_14_a2,
author = {M. M. Sirazhudinov},
title = {On continuous periodic solutions of the {Beltrami} equation in a half-plane},
journal = {Daghestan Electronic Mathematical Reports},
pages = {30--37},
year = {2020},
number = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2020_14_a2/}
}
M. M. Sirazhudinov. On continuous periodic solutions of the Beltrami equation in a half-plane. Daghestan Electronic Mathematical Reports, no. 14 (2020), pp. 30-37. http://geodesic.mathdoc.fr/item/DEMR_2020_14_a2/
[1] Sirazhudinov M.M., “O periodicheskikh resheniyakh odnoi ellipticheskoi sistemy pervogo poryadka”, Matem. zametki, 5:5 (1990), 153–155 | MR | Zbl
[2] Sirazhudinov M.M., “O $G$-skhodimosti i usrednenii obobschennykh operatorov Beltrami”, Matem. zametki, 199:5 (2008), 127–158 | MR
[3] Sirazhudinov M.M., Sirazhudinov R.M., “O $G$-skhodimosti sistem obobschennykh operatorov Beltrami”, Trudy MIAN, 121, no. 5, 2008, 268–275 | MR
[4] Sirazhudinov M.M.O, “O $G$-skhodimosti sistem obobschennykh operatorov Beltrami”, Diff. uravn., 26:2 (1990), 298–305 | MR
[5] Sirazhudinov M.M., “O kraevoi zadache Rimana–Gilberta”, Diff. uravn., 25:8 (1989), 1400–1406 | MR | Zbl