Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2020_13_a4, author = {R. F. Shamoyan}, title = {On new parametric representations of certain classes of subharmonic functions in the unit disk}, journal = {Daghestan Electronic Mathematical Reports}, pages = {65--72}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a4/} }
TY - JOUR AU - R. F. Shamoyan TI - On new parametric representations of certain classes of subharmonic functions in the unit disk JO - Daghestan Electronic Mathematical Reports PY - 2020 SP - 65 EP - 72 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a4/ LA - ru ID - DEMR_2020_13_a4 ER -
R. F. Shamoyan. On new parametric representations of certain classes of subharmonic functions in the unit disk. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 65-72. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a4/
[1] Djrbashian M.,Shamoyan F., Topics in the theory of $A_\alpha^p$ spaces, Teubner-Texte zur Mathematik, 105, BSB B.G.Teubner Verlagsgesellschaft, Leipzig, 1988, 199 pp. | MR
[2] Hedenmalm H.,Korenblum B. and Zhu K., Theory of Bergman spaces, Graduate Texts in Mathematics, 199, Springer-Verlag, New York, 2000, 199 pp. | DOI | MR | Zbl
[3] Shamoyan R., Li H., “Descriptions of zero sets and parametric representations of certain new analytic area Nevanlinna type spaces in the unit disk”, Kragujevac Journal of Mathematics, 34 (2010), 73–89 | MR | Zbl
[4] Shamoyan R., Li H., “Characterizations of closed ideals and main parts of some analytic and meromorphic classes of area Nevanlinna type in the unit disk”, International Journal of Mathematics and Statistics, 10 (2011), 109–121 | MR
[5] Hayman W.K., Kennedy P.B., Subharmonic functions, London Mathematical Society Monographs, Academic Press, London-New-York, 2000, 512 pp. | MR
[6] Ochlupina O., “On characterization of certain spaces of subharmonic functions in the unit disk having certain growth near boundary of the unit disk”, Vesnik BGU, 10 (2009), 61–72 (in Russian)
[7] Ronkin L., Introduction to the theory of entire functions of several variables, Translation of Math. Monographs, 44, AMS, Providence, Rhode Island, 2000, 273 pp. | MR
[8] Shamoyan F., “Parametric representation and description for the root sets of weighted classes of holomorphic functions in the disk”, Siberian Mathematical Journal, 40:6 (1999), 1422–1440 (in Russian) | DOI | MR | Zbl
[9] Landkoff N., Bases of modern potential theory, Nauka, Moscow, 1966 (in Russian) | MR