Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice
Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 57-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the Wang-Landau algorithm, the Monte Carlo method is used to study the thermodynamic properties of the two-dimensional Potts model with the number of spin states $q=4$ on a triangular lattice, taking into account the interactions of the first and second nearest neighbors. It is shown that taking into account antiferromagnetic interactions of the second nearest neighbors leads to frustration.
Keywords: Monte Carlo method, Wang-Landau algorithm, frustration.
@article{DEMR_2020_13_a3,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of the {Potts} model with the number of spin states $q = 4$ on a triangular lattice},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {57--64},
     publisher = {mathdoc},
     volume = {13},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice
JO  - Daghestan Electronic Mathematical Reports
PY  - 2020
SP  - 57
EP  - 64
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/
LA  - ru
ID  - DEMR_2020_13_a3
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice
%J Daghestan Electronic Mathematical Reports
%D 2020
%P 57-64
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/
%G ru
%F DEMR_2020_13_a3
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 57-64. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/