Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2020_13_a3, author = {M. K. Ramazanov and A. K. Murtazaev}, title = {Computer simulation of the {Potts} model with the number of spin states $q = 4$ on a triangular lattice}, journal = {Daghestan Electronic Mathematical Reports}, pages = {57--64}, publisher = {mathdoc}, volume = {13}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/} }
TY - JOUR AU - M. K. Ramazanov AU - A. K. Murtazaev TI - Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice JO - Daghestan Electronic Mathematical Reports PY - 2020 SP - 57 EP - 64 VL - 13 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/ LA - ru ID - DEMR_2020_13_a3 ER -
%0 Journal Article %A M. K. Ramazanov %A A. K. Murtazaev %T Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice %J Daghestan Electronic Mathematical Reports %D 2020 %P 57-64 %V 13 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/ %G ru %F DEMR_2020_13_a3
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of the Potts model with the number of spin states $q = 4$ on a triangular lattice. Daghestan Electronic Mathematical Reports, Tome 13 (2020), pp. 57-64. http://geodesic.mathdoc.fr/item/DEMR_2020_13_a3/
[1] Dotsenko V. S., “Critical phenomena and quenched disorder”, Phys. Usp., 38:5 (1995), 457–496 | DOI
[2] Korshunov S.E., “Phase transitions in two-dimensional systems with continuous degeneracy”, Phys. Usp., 49:3 (2006), 225–262 | DOI
[3] Ramazanov M. K., Murtazaev A. K., “Phase transitions and critical characteristics in the layered antiferromagnetic Ising model with next-nearest-neighbor intralayer interactions”, JETP Lett, 101:10 (2015), 714–718 | DOI
[4] Ramazanov M.K., Murtazaev A.K., “Fazovye perekhody i kriticheskie svoistva v antiferromagnitnoi modeli Geizenberga na sloistoi kubicheskoi reshetke”, Pisma v ZhETF, 106:2 (2017), 72–77 | MR
[5] Ramazanov M.K., Murtazaev A.K., “Investigation of critical phenomena of the frustrated Ising model on a cubic lattice with next-nearest-neighbor intralayer interactions by the Monte Carlo method”, Phase Transitions, 91:1 (2018), 83–91 | DOI
[6] Murtazaev A.K., Magomedov M.A., Ramazanov M.K., “Fazovaya diagramma i struktura osnovnogo sostoyaniya antiferromagnitnoi modeli Izinga na ob'emno-tsentrirovannoi kubicheskoi reshetke”, Pisma v ZhETF, 107:4 (2018), 265–269
[7] Murtazaev A. K., Ramazanov M. K., Badiev M. K., “Critical properties of the two-dimensional Ising model on a square lattice with competing interactions”, Phys. B: Cond. Matt., 476 (2015), 1–5 | DOI
[8] Murtazaev A.K., Ramazanov M.K., Badiev M.K., “Phase transitions and critical phenomena in the antiferromagnetic Ising model on a layered triangular lattice”, Physica A: Statistical Mechanics and its Applications, 507 (2018), 210–218 | DOI | MR | Zbl
[9] Ramazanov M.K., Murtazaev A.K., “Kompyuternoe modelirovanie kriticheskikh svoistv frustrirovannoi modeli Izinga”, Dagestanskie elektronnye matematicheskie izvestiya, 107:9 (2018), 26–32
[10] Murtazaev A.K., Ramazanov M.K., Mazagaeva M.K., Magomedov M.A., “Fazovye perekhody i termodinamicheskie svoistva modeli Pottsa s chislom sostoyanii spina $q=4$ na geksagonalnoi reshetke”, ZhETF, 156:3 (2019), 502–506
[11] Ramazanov M.K., Murtazaev A.K., Magomedov M.A., Mazagaeva M.K., “Issledovanie fazovykh perekhodov i termodinamicheskikh svoistv modeli Pottsa s Cq=4 na geksagonalnoi reshetke s vzaimodeistviyami vtorykh blizhaishikh sosedei”, FTT, 62:3 (2020), 442–446