Inverse of the conic transformation of a function with a power weight
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Radon transformation defined on circular cones called the conical Radon transform. In the three-dimensio-nal space $R^{3}$, it maps the functions to its surface integrals over a circular cone, and in $R^{2}$ to its integrals over two rays with a common vertex. In this paper, we present new formulas for inversion of k-weighted conical and X-ray Radon transformations under complete and incomplete data in $R^{2}$ and $R^{3}$.
Keywords: conical transformation, k-weighted X-ray trans-formation, Radon transformation, inversion formula.
@article{DEMR_2019_12_a3,
     author = {Z. G. Medzhidov},
     title = {Inverse of the conic transformation of a function with a power weight},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/}
}
TY  - JOUR
AU  - Z. G. Medzhidov
TI  - Inverse of the conic transformation of a function with a power weight
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 43
EP  - 54
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/
LA  - ru
ID  - DEMR_2019_12_a3
ER  - 
%0 Journal Article
%A Z. G. Medzhidov
%T Inverse of the conic transformation of a function with a power weight
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 43-54
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/
%G ru
%F DEMR_2019_12_a3
Z. G. Medzhidov. Inverse of the conic transformation of a function with a power weight. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54. http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/