Inverse of the conic transformation of a function with a power weight
Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Radon transformation defined on circular cones called the conical Radon transform.
In the three-dimensio-nal space $R^{3}$,
it maps the functions to its surface integrals over a circular cone, and in $R^{2}$ to its integrals over two rays with a common vertex.
In this paper, we present new formulas for inversion of k-weighted conical and X-ray Radon transformations under complete and incomplete data in $R^{2}$ and $R^{3}$.
Keywords:
conical transformation, k-weighted X-ray trans-formation, Radon transformation, inversion formula.
@article{DEMR_2019_12_a3,
author = {Z. G. Medzhidov},
title = {Inverse of the conic transformation of a function with a power weight},
journal = {Daghestan Electronic Mathematical Reports},
pages = {43--54},
publisher = {mathdoc},
volume = {12},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/}
}
Z. G. Medzhidov. Inverse of the conic transformation of a function with a power weight. Daghestan Electronic Mathematical Reports, Tome 12 (2019), pp. 43-54. http://geodesic.mathdoc.fr/item/DEMR_2019_12_a3/