On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 32-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the function $f(x)=\exp(-x)$, $x\in [0,+\infty)$ on grids of nodes $\Delta: 0=x_0$ with $x_n\to +\infty$ we construct rational spline-functions such that $R_k(x,f, \Delta)=R_i(x,f)A_{i,k}(x)+R_{i-1}(x, f)B_{i,k}(x)$ for $x\in[x_{i-1}, x_i]$ $(i=1,2,\dots)$ and $k=1,2,\dots$ Here $A_{i,k}(x)=(x-x_{i-1})^k/((x-x_{i-1})^k+(x_i-x)^k)$, $B_{i,k}(x)=1-A_{i,k}(x)$, $R_j(x,f)=\alpha_j+\beta_j(x-x_j)+\gamma_j/(x+1)$ $(j=1,2,\dots)$, $R_j(x_m,f)=f(x_m)$ при $m=j-1,j,j+1$; we take $R_0(x,f)\equiv R_1(x,f)$. Bounds for the convergence rate of $R_k(x,f, \Delta)$ with $f(x)=\exp(-x)$, $x\in [0,+\infty)$, are found.
Keywords: interpolation spline, rational spline, approximation on semi-axis.
@article{DEMR_2019_11_a4,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {32--37},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a4/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 32
EP  - 37
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_11_a4/
LA  - ru
ID  - DEMR_2019_11_a4
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 32-37
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_11_a4/
%G ru
%F DEMR_2019_11_a4
A.-R. K. Ramazanov; V. G. Magomedova. On the approximation of $\exp(-x)$ on the half-axis by spline functions in three-point rational interpolants. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 32-37. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a4/

[1] Cody W.J., Meinardus G., Varga R.S., “Chebyshev rational appro-ximations to $e^{-x}$ in $[0,+\infty)$ and applications to heat-cunduction problems”, Journal of approximation theory, 2 (1969), 50–65 | DOI | Zbl

[2] Gonchar A.A., Rakhmanov E.A., “Ravnomernye raspredeleniya i skorost ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sb., 134(176):3(11) (1987), 306–352 | Zbl

[3] Ramazanov A.-R.K., Magomedova V.G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Matem. zametki, 103:4 (2018), 588–599 | DOI

[4] Ramazanov A.-R.K., Magomedova V.G., “Otsenki skorosti skhodimosti splainov po trekhtochechnym ratsionalnym interpolyantam dlya nepreryvnykh i nepreryvno differentsiruemykh funktsii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 23, no. 3, 2017, 224–233 | DOI