A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 28-48

Voir la notice de l'article provenant de la source Math-Net.Ru

A priori estimates of the positive solution of the two-point boundary value problem are obtained $y^{\prime\prime}=-f(x,y)$, $0$, $y(0)=y(1)=0$ assuming that $f(x,y)$ is continuous at $x \in [0,1]$, $y \in R$ and satisfies the condition $a_0 x^{\gamma}y^p \leq f(x,y) \leq a_1 y^p$, where $a_0>0$, $a_1>0$, $p>1$, $\gamma \geq 0$ – constants.
Keywords: positive solution, a priori estimates, differential equation, two-point boundary value problem.
@article{DEMR_2019_11_a3,
     author = {E. I. Abduragimov},
     title = {A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {28--48},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a3/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 28
EP  - 48
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_11_a3/
LA  - ru
ID  - DEMR_2019_11_a3
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 28-48
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_11_a3/
%G ru
%F DEMR_2019_11_a3
E. I. Abduragimov. A priori estimates of the positive solution of the two-point boundary value problem for one second-order nonlinear differential equation. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 28-48. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a3/