Computer simulation of phase transitions of the Heisenberg antiferromagnetic model
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 25-31

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the replica algorithm by the Monte Carlo method, a computer simulation of the three-dimensional antiferromagnetic Heisenberg model is performed, taking into account the interactions of the first and second nearest neighbors. The phase transitions of this model are studied. The investigations were carried out for the ratios of the exchange interactions of the first and second nearest neighbors $r = J_2 / J_1$ in the range $0.0 \leq r \leq 1.0$. The phase diagram of the critical temperature dependence on a value of the next-nearest neighbor interaction is plotted.
Keywords: Monte Carlo method, replica algorithm, phase transitions.
@article{DEMR_2019_11_a2,
     author = {M. K. Ramazanov and A. K. Murtazaev},
     title = {Computer simulation of phase transitions of the {Heisenberg} antiferromagnetic model},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a2/}
}
TY  - JOUR
AU  - M. K. Ramazanov
AU  - A. K. Murtazaev
TI  - Computer simulation of phase transitions of the Heisenberg antiferromagnetic model
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 25
EP  - 31
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_11_a2/
LA  - ru
ID  - DEMR_2019_11_a2
ER  - 
%0 Journal Article
%A M. K. Ramazanov
%A A. K. Murtazaev
%T Computer simulation of phase transitions of the Heisenberg antiferromagnetic model
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 25-31
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_11_a2/
%G ru
%F DEMR_2019_11_a2
M. K. Ramazanov; A. K. Murtazaev. Computer simulation of phase transitions of the Heisenberg antiferromagnetic model. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 25-31. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a2/