@article{DEMR_2019_11_a1,
author = {Boudref Mohamed-Ahmed},
title = {Titchmarsh's theorem of {Hankel} transform},
journal = {Daghestan Electronic Mathematical Reports},
pages = {11--24},
year = {2019},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a1/}
}
Boudref Mohamed-Ahmed. Titchmarsh's theorem of Hankel transform. Daghestan Electronic Mathematical Reports, no. 11 (2019), pp. 11-24. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a1/
[1] Daher R. and Hamma M., “An analog of Titchmarch's theorem of Jacobi transform”, Int. J. Math. Anal., 6:17–20 (2012), 975–981 | Zbl
[2] Ditkine V., “Calcul opérationnel”, UMN, 2:6(22) (1947), 72–158
[3] Ditkine V., “Calcul opérationnel”, UMN, 2:6(22) (1947), 72–158
[4] Kantorovitch L., “On approximate calculation of certain types of definite integrals and other applications of the method of selection of singularities”, Mat. Sb., 41 (1934), 235–245
[5] James J. F., A Student's guide to Fourier transform with applications in Physics and Engineering, Third edition, Cambridge University Press, 2011
[6] Kikushi H., “Bessel transforms”, Bull. Electrot. Lab., 16 (1954), 111–120
[7] Lébedev N., Certaines transformations intégrales de la physique mathématique, 1950
[8] Maslouhi M., “An analog of Titchmarsh's theorem for Dunkl transform”, Integral transfomrs and Spec. Functions, 21:9-10 (2010), 771–778 | DOI | Zbl
[9] Nikol'skii S. M., Approximation of functions of several variables and imbedding and theorems, Springer-Verlag, New York, 2011
[10] Platonov S. S., “An analog of Titchmarsh's theorem of the Fourier-walsh transform”, Mathematical notes, 103:1 (2018), 96–103 | DOI | Zbl
[11] Titchmarsh E. C., Introduction to the theory of Fourier integrals, Oxford University Press, Amen House, London, 1948
[12] Zygmund A., Trigonometric series, Cambridge University Press, London, 1968