Analogs of the Liouville property for Bessel function series
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 1-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study functions given in the form of a series in Bessel's functions of the first kind. The admissible asymptotic behavior of such functions at infinity is founded. As a consequence we obtain an analog of Liouville's theorem for the Fourier-Bessel and Dini developments.
Keywords: cylindrical functions, Liouville property, asymptotic behavior.
@article{DEMR_2019_11_a0,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Analogs of the {Liouville} property for {Bessel} function series},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Analogs of the Liouville property for Bessel function series
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 1
EP  - 10
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/
LA  - ru
ID  - DEMR_2019_11_a0
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Analogs of the Liouville property for Bessel function series
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 1-10
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/
%G ru
%F DEMR_2019_11_a0
N. P. Volchkova; Vit. V. Volchkov. Analogs of the Liouville property for Bessel function series. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 1-10. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/

[1] Caruzzo Dolcetta I., Cutrì A., “On the Liouville property for sublaplacians”, Ann. Scuola Norm. Sup. Pisa Cl. Sci., XXV:4 (1997), 239–256

[2] Cutrì A., Leoni F., “On the Liouville property for fully nonlinear equations”, Ann. Inst. Henri Poincaré, Analyse non linéaire, 17:2 (2000), 219–245 | DOI | Zbl

[3] Chu C.H., Lau A.T.M., “Harmonic functions on topological groups and symmetric spaces”, Math. Z., 268:3–4 (2011), 649–673. | DOI | Zbl

[4] Degtyarev S.P., “Liouville Property for solutions of the linearized degenerate thin film equation of fourth order in a halfspace”, Results in Mathematics, 70:3–4 (2016), 137–161. | DOI | Zbl

[5] Heyer H., “The Liouville property for harmonic functions on groups and hypergroups”, Methods of Functional Analysis and Topology, 23:1 (2017), 3–25. | Zbl

[6] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, IL, Moskva, 1958, 156 pp.

[7] Smith J.D., “Harmonic analysis of scalar and vector fields in $\mathbb {R}^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | Zbl

[8] Volchkov V.V., “Problemy tipa Pompeiyu na mnogoobraziyakh”, Doklady AN Ukrainy, 1993, no. 11, 9–13. | Zbl

[9] Thangavelu S., “Spherical means and CR functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286. | DOI | Zbl

[10] Rawat R., Sitaram A., “The injectivity of the Pompeiu transform and $L^p$-analogues of the Wiener Tauberian theorem”, Israel J. Math., 91 (1995), 307–316. | DOI | Zbl

[11] Agranovsky M. L., Narayanan E.K., “$L^p$-integrability, supports of Fourier transforms and uniqueness for convolution equations”, J. Fourier Anal. Appl., 10 (2004), 13–27. | DOI

[12] Volchkov V.V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sbornik, 188:9 (1997), 13–30 | Zbl

[13] Volchkov V.V., Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003, 456 pp. | Zbl

[14] Volchkov V.V., Volchkov Vit.V., Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, Springer, London, 2009, 672 pp. | Zbl

[15] Volchkov V.V., Volchkov Vit.V., Offbeat integral geometry on symmetric spaces, Birkhäuser, Basel, 2013, 592 pp. | Zbl

[16] Egrafov M.A., Asimptoticheskie otsenki i tselye funktsii, Fizmatgiz, Moskva, 1962, 320 pp.

[17] Egrafov M.A., Analiticheskie funktsii, Nauka, Moskva, 1965, 424 pp.

[18] Shahshahani M., Sitaram A., “The Pompeiu problem in exterior domains in symmetric spaces”, Contemp. Math., 63, 1987, 267–277 | DOI | Zbl

[19] Volchkov V. V., Volchkov Vit. V., “Povedenie na beskonechnosti reshenii iskazhennogo uravneniya svertki”, Izvestiya RAN. Ser. matem., 76:1 (2012), 85–100. | Zbl

[20] Hansen W. A., “Liouville property for spherical averages in the plane”, Math. Ann., 319:1 (2001), 539–551. | DOI | Zbl

[21] Beitmen G., Erdeii A., Vysshie tranctsendentnye funktsii, v. 2, Nauka, Moskva, 1974, 296 pp.

[22] Moore C.N., “On the summability of the developments in Bessel's functions”, Trans. Amer. Math. Soc., 21:2 (1920), 107–156 | Zbl