Analogs of the Liouville property for Bessel function series
Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 1-10

Voir la notice de l'article provenant de la source Math-Net.Ru

We study functions given in the form of a series in Bessel's functions of the first kind. The admissible asymptotic behavior of such functions at infinity is founded. As a consequence we obtain an analog of Liouville's theorem for the Fourier-Bessel and Dini developments.
Keywords: cylindrical functions, Liouville property, asymptotic behavior.
@article{DEMR_2019_11_a0,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {Analogs of the {Liouville} property for {Bessel} function series},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - Analogs of the Liouville property for Bessel function series
JO  - Daghestan Electronic Mathematical Reports
PY  - 2019
SP  - 1
EP  - 10
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/
LA  - ru
ID  - DEMR_2019_11_a0
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T Analogs of the Liouville property for Bessel function series
%J Daghestan Electronic Mathematical Reports
%D 2019
%P 1-10
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/
%G ru
%F DEMR_2019_11_a0
N. P. Volchkova; Vit. V. Volchkov. Analogs of the Liouville property for Bessel function series. Daghestan Electronic Mathematical Reports, Tome 11 (2019), pp. 1-10. http://geodesic.mathdoc.fr/item/DEMR_2019_11_a0/