Convex interpolation by rational spline functions of class $ C ^ 2 $
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 62-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are established for the convexity of interpolation rational spline-functions of the class $C^2$.
Keywords: convex interpolation, interpolation splines, rational spline-functions.
@article{DEMR_2018_9_a6,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {Convex interpolation by rational spline functions of class $ C ^ 2 $},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {62--67},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - Convex interpolation by rational spline functions of class $ C ^ 2 $
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 62
EP  - 67
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/
LA  - ru
ID  - DEMR_2018_9_a6
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T Convex interpolation by rational spline functions of class $ C ^ 2 $
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 62-67
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/
%G ru
%F DEMR_2018_9_a6
A.-R. K. Ramazanov; V. G. Magomedova. Convex interpolation by rational spline functions of class $ C ^ 2 $. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 62-67. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/

[1] Schweikert D.G., “An interpolation curve using a splane in tension”, J. Math. Phys., 45 (1966), 312–317 | DOI | Zbl

[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf., 1984, 610–620 | Zbl

[3] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[4] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844 | Zbl

[5] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | Zbl

[6] Spath H., Spline algorithms for curves and surfaces, Utilitas Mathematica Publ. Inc., Winnipeg, 1974, 198 pp.

[7] Edeoa A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[8] Ramazanov A.-R.K., Magomedova V.G., “Ob usloviyakh vypuklosti splainov po trekhtochechnym ratsionalnym interpolyantam”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 1–6

[9] Ramazanov A.-R.K., Magomedova V.G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 592–603 | Zbl