Keywords: rational spline-functions.
@article{DEMR_2018_9_a6,
author = {A.-R. K. Ramazanov and V. G. Magomedova},
title = {Convex interpolation by rational spline functions of class $ C ^ 2 $},
journal = {Daghestan Electronic Mathematical Reports},
pages = {62--67},
year = {2018},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/}
}
A.-R. K. Ramazanov; V. G. Magomedova. Convex interpolation by rational spline functions of class $ C ^ 2 $. Daghestan Electronic Mathematical Reports, no. 9 (2018), pp. 62-67. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a6/
[1] Schweikert D.G., “An interpolation curve using a splane in tension”, J. Math. Phys., 45 (1966), 312–317 | DOI | Zbl
[2] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf., 1984, 610–620 | Zbl
[3] Kvasov B.I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.
[4] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844 | Zbl
[5] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292 | DOI | Zbl
[6] Spath H., Spline algorithms for curves and surfaces, Utilitas Mathematica Publ. Inc., Winnipeg, 1974, 198 pp.
[7] Edeoa A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122
[8] Ramazanov A.-R.K., Magomedova V.G., “Ob usloviyakh vypuklosti splainov po trekhtochechnym ratsionalnym interpolyantam”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 1–6
[9] Ramazanov A.-R.K., Magomedova V.G., “Bezuslovno skhodyaschiesya interpolyatsionnye ratsionalnye splainy”, Mat. zametki, 103:4 (2018), 592–603 | Zbl