Fast computation of linear combinations of Sobolev functions generated by the Haar functions
Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some properties of orthogonal with respect to Sobolev inner product functions $\chi_{1,n}(x)$, generated by Haar functions, are considered. In particular, recurrent formulas for $\chi_{1,n}(x)$ are obtained. It is developed an algorithm for calculation of the linear combinations of $N$ functions $\chi_{1,n}(x)$ using $O(\log N)$ operations.
Keywords: Haar system, numerical method, Sobolev type inner product, fast algorithm.
@article{DEMR_2018_9_a1,
     author = {M. G. Magomed-Kasumov and S. R. Magomedov},
     title = {Fast computation of linear combinations of {Sobolev} functions generated by the {Haar} functions},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {9},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_9_a1/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
AU  - S. R. Magomedov
TI  - Fast computation of linear combinations of Sobolev functions generated by the Haar functions
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 7
EP  - 14
VL  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_9_a1/
LA  - ru
ID  - DEMR_2018_9_a1
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%A S. R. Magomedov
%T Fast computation of linear combinations of Sobolev functions generated by the Haar functions
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 7-14
%V 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_9_a1/
%G ru
%F DEMR_2018_9_a1
M. G. Magomed-Kasumov; S. R. Magomedov. Fast computation of linear combinations of Sobolev functions generated by the Haar functions. Daghestan Electronic Mathematical Reports, Tome 9 (2018), pp. 7-14. http://geodesic.mathdoc.fr/item/DEMR_2018_9_a1/

[1] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, Izd-vo AFTs, Moskva, 1999, 560 pp.

[2] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl

[3] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl

[4] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | Zbl

[5] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Sistemy funktsii, ortogonalnykh otnositelno skalyarnykh proizvedenii tipa Soboleva s diskretnymi massami, porozhdennykh klassicheskimi ortogonalnymi sistemami”, Dagestanskie elektronnye matematicheskie izvestiya, 6 (2016), 31–60

[6] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | Zbl

[7] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73

[8] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14

[9] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76

[10] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60

[11] Sultanakhmedov M.S., Sharapudinov T.I., “Priblizhennoe reshenie zadachi Koshi dlya sistem ODU s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 100–109

[12] Sharapudinov I.I., Magomedov S.R., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s funktsiyami Khaara, i zadacha Koshi dlya ODU”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 1–15

[13] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Raznostnye uravneniya i polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Vladikavk. matem. zhurn., 19:2 (2017), 58–72 | Zbl

[14] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76