A fast algorithm for solving the Cauchy problem for ODE using the Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind
Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 66-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a numerical implementation of iteration process for solving Cauchy problem for ODE using the Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind $T_0=1/\sqrt{2}$, $T_k(x)=\cos k\arccos x$ ($k\ge1$). Using the fast DCT, we construct the algorithm for this iteration process and develop the corresponding computer program. A number of numerical experiments show that the Fourier series by Sobolev – Chebyshev polynomials are very convenient for solving Cauchy problem.
Keywords: Chebyshev polynomials, Sobolev orthogonal polynomials, fast Fourier transform, discrete cosine transform, fixed-point iteration.
@article{DEMR_2018_10_a6,
     author = {M. S. Sultanakhmedov and T. N. Shakh-Emirov},
     title = {A fast algorithm for solving the {Cauchy} problem for {ODE} using the {Sobolev} orthogonal polynomials generated by {Chebyshev} polynomials of the first kind},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {66--76},
     publisher = {mathdoc},
     volume = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a6/}
}
TY  - JOUR
AU  - M. S. Sultanakhmedov
AU  - T. N. Shakh-Emirov
TI  - A fast algorithm for solving the Cauchy problem for ODE using the Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 66
EP  - 76
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a6/
LA  - ru
ID  - DEMR_2018_10_a6
ER  - 
%0 Journal Article
%A M. S. Sultanakhmedov
%A T. N. Shakh-Emirov
%T A fast algorithm for solving the Cauchy problem for ODE using the Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 66-76
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a6/
%G ru
%F DEMR_2018_10_a6
M. S. Sultanakhmedov; T. N. Shakh-Emirov. A fast algorithm for solving the Cauchy problem for ODE using the Sobolev orthogonal polynomials generated by Chebyshev polynomials of the first kind. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 66-76. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a6/

[1] Althammer P., “Eine Erweiterung des Orthogonalitatsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”, J. Reine Angew. Math., 1962:211 (1962), 192–204 | DOI | Zbl

[2] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory., 65:2 (1991), 151–175 | DOI | Zbl

[3] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory., 73:1 (1993), 1–16 | DOI | Zbl

[4] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, J. Comput. Appl. Math., 48:1-2 (1993), 113–131 | DOI | Zbl

[5] Lopez G. Marcellan F. Vanassche W., “Relative Asymptotics for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner-Product”, Constr. Approx., 11:1 (1995), 107–137 | DOI | Zbl

[6] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $L^{-k}_n(x)$ for positive integers $k$”, Ann. Numer. Anal., 2:1-4 (1995), 289–303 | Zbl

[7] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28:2 (1998), 547–594 | DOI | Zbl

[8] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14

[9] Sharapudinov I.I., “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24

[10] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki., 101:4 (2017), 611–629 | Zbl

[11] Sharapudinov I.I., “Ortogonalnye po Sobolevu polinomy, porozhdennye polinomami Yakobi i Lezhandra, i spetsialnye ryady so svoistvom prilipaniya ikh chastichnykh summ”, Matem. sb., 209:9 (2018), 142–170 | Zbl

[12] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | Zbl

[13] Sharapudinov I.I., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda, i zadacha Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differentsialnye uravneniya, 54:12 (2018), 1645–1662 | Zbl

[14] Sultanakhmedov M.S., Shakh-Emirov T.N., “Algoritm bystrogo diskretnogo preobrazovaniya dlya summ Fure po ortogonalnym po Sobolevu polinomam, porozhdennym polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 52–61