Inversion of the V-Radon transform in a circle on incomplete data
Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

New inversion formulas for the integral transformation on two-parameter families of polyhedrons in a circle are obtained. The first formula is obtained by the Cormac method of Fourier series expansions, the second one is based on the function interpolation theorem with finite Fourier transform.
Keywords: $V$-Radon transform, inversion formula, Fourier series, limited angular range.
@article{DEMR_2018_10_a5,
     author = {Z. G. Medzhidov and Sh. M. Gammadov},
     title = {Inversion of the {V-Radon} transform in a circle on incomplete data},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {61--65},
     publisher = {mathdoc},
     volume = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a5/}
}
TY  - JOUR
AU  - Z. G. Medzhidov
AU  - Sh. M. Gammadov
TI  - Inversion of the V-Radon transform in a circle on incomplete data
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 61
EP  - 65
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a5/
LA  - ru
ID  - DEMR_2018_10_a5
ER  - 
%0 Journal Article
%A Z. G. Medzhidov
%A Sh. M. Gammadov
%T Inversion of the V-Radon transform in a circle on incomplete data
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 61-65
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a5/
%G ru
%F DEMR_2018_10_a5
Z. G. Medzhidov; Sh. M. Gammadov. Inversion of the V-Radon transform in a circle on incomplete data. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 61-65. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a5/

[1] Gaik Ambartsoumian, Sunghwan Moon, “A series formula for inversion of the V-line Radon transform in a disc.”, Comp. Math. Appl., 66:9 (2013), 1567–1572 | DOI

[2] Palamodov V.P., Reconstructive Integral Geometry, Tel Aviv University, 2004, 174 pp.

[3] Nguyen M.K., Truong T.T., “On new V-line Radon transforms in $R^2$ and their inversion”, Journal of Physics A: Mathematical and Theoretical, 44:7 (2011), 075206 | DOI

[4] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, Moskva, 1990, 280 pp.

[5] Medzhidov Z.G., “O vosstanovlenii funktsii po ee integralam vdol lomanykh odnogo semeistva na ploskosti”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 7 (2017), 52–60