The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system
Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 50-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an iterative method that numerically solves Cauchy problem for systems of equations. Suggested method is based on using Sobolev orthogonal system of functions, generated by Haar functions $\{1, \chi_n, 2^k n \leq 2^{k+1}, k \geq 1\}$.
Keywords: Cauchy problem, numerical method, Sobolev inner product, system of differential equations, Haar system.
@article{DEMR_2018_10_a4,
     author = {M. G. Magomed-Kasumov and S. R. Magomedov},
     title = {The spectral method for solving the {Cauchy} problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of {Sobolev,} generated by the {Haar} system},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {50--60},
     publisher = {mathdoc},
     volume = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
AU  - S. R. Magomedov
TI  - The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 50
EP  - 60
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/
LA  - ru
ID  - DEMR_2018_10_a4
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%A S. R. Magomedov
%T The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 50-60
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/
%G ru
%F DEMR_2018_10_a4
M. G. Magomed-Kasumov; S. R. Magomedov. The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 50-60. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/

[1] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 66–76

[2] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[3] Sharapudinov I.I., “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24

[4] Sharapudinov I.I. Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | Zbl

[5] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | Zbl

[6] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl

[7] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73

[8] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14

[9] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 8, 53–60

[10] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, Moskva, 1999

[11] Sharapudinov I.I., Magomedov S.R., “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 1–15

[12] Magomed-Kasumov M.G., Magomedov S.R., “Bystroe vychislenie lineinykh kombinatsii sobolevskikh funktsii, porozhdennykh funktsiyami Khaara”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2018, no. 9, 7–14

[13] Farkov Yu.A., Ryady Fure i osnovy veivlet-analiza, Moskva, 2007