Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2018_10_a4, author = {M. G. Magomed-Kasumov and S. R. Magomedov}, title = {The spectral method for solving the {Cauchy} problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of {Sobolev,} generated by the {Haar} system}, journal = {Daghestan Electronic Mathematical Reports}, pages = {50--60}, publisher = {mathdoc}, volume = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/} }
TY - JOUR AU - M. G. Magomed-Kasumov AU - S. R. Magomedov TI - The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system JO - Daghestan Electronic Mathematical Reports PY - 2018 SP - 50 EP - 60 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/ LA - ru ID - DEMR_2018_10_a4 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %A S. R. Magomedov %T The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system %J Daghestan Electronic Mathematical Reports %D 2018 %P 50-60 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/ %G ru %F DEMR_2018_10_a4
M. G. Magomed-Kasumov; S. R. Magomedov. The spectral method for solving the Cauchy problem for systems of ordinary differential equations by means of a system of functions orthogonal in the sense of Sobolev, generated by the Haar system. Daghestan Electronic Mathematical Reports, Tome 10 (2018), pp. 50-60. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a4/
[1] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 66–76
[2] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
[3] Sharapudinov I.I., “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24
[4] Sharapudinov I.I. Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | Zbl
[5] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | Zbl
[6] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl
[7] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73
[8] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14
[9] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 8, 53–60
[10] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, Moskva, 1999
[11] Sharapudinov I.I., Magomedov S.R., “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 1–15
[12] Magomed-Kasumov M.G., Magomedov S.R., “Bystroe vychislenie lineinykh kombinatsii sobolevskikh funktsii, porozhdennykh funktsiyami Khaara”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2018, no. 9, 7–14
[13] Farkov Yu.A., Ryady Fure i osnovy veivlet-analiza, Moskva, 2007