Fast algorithm for finding approximate solutions to the Cauchy problem for ODE
Daghestan Electronic Mathematical Reports, no. 10 (2018), pp. 41-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present article considers the quick algorithm for finding an approximate solution for the Cauchy problem for ODE by calculating the coefficients of expansion of this solution in terms of the system $\{\varphi_{1,n}(x)\}_{n=0}^{\infty}$, where $\varphi_{1,0}(x)=1$, $\varphi_{1,1}(x)=x$, $\varphi_{1,n+1}(x)=\frac{\sqrt{2}}{\pi n}\sin(\pi nx),$ $n=1,2,\ldots$. This system is orthonormal with respect to the Sobolev scalar product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(x)g'(x)dx$ and generated by cosines $\varphi_0(x)=1$, $ \{\varphi_n(x)=\sqrt{2}\cos(\pi nx)\}_{n=1}^\infty$. The calculation of these coefficients is performed by an iterative process based on the fast Fourier transform.
Keywords: ordinary differential equation, Cauchy problem, inner product of Sobolev type, Sobolev orthonormal function, discrete cosine transform.
Mots-clés : fast Fourier transform
@article{DEMR_2018_10_a3,
     author = {G. G. Akniev and R. M. Gadzhimirzaev},
     title = {Fast algorithm for finding approximate solutions to the {Cauchy} problem for {ODE}},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {41--49},
     year = {2018},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2018_10_a3/}
}
TY  - JOUR
AU  - G. G. Akniev
AU  - R. M. Gadzhimirzaev
TI  - Fast algorithm for finding approximate solutions to the Cauchy problem for ODE
JO  - Daghestan Electronic Mathematical Reports
PY  - 2018
SP  - 41
EP  - 49
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/DEMR_2018_10_a3/
LA  - ru
ID  - DEMR_2018_10_a3
ER  - 
%0 Journal Article
%A G. G. Akniev
%A R. M. Gadzhimirzaev
%T Fast algorithm for finding approximate solutions to the Cauchy problem for ODE
%J Daghestan Electronic Mathematical Reports
%D 2018
%P 41-49
%N 10
%U http://geodesic.mathdoc.fr/item/DEMR_2018_10_a3/
%G ru
%F DEMR_2018_10_a3
G. G. Akniev; R. M. Gadzhimirzaev. Fast algorithm for finding approximate solutions to the Cauchy problem for ODE. Daghestan Electronic Mathematical Reports, no. 10 (2018), pp. 41-49. http://geodesic.mathdoc.fr/item/DEMR_2018_10_a3/

[1] Sharapudinov I.I., Magomed-Kasumov M.G., “Chislennyi metod resheniya zadachi Koshi dlya sistem obyknovennykh differentsialnykh uravnenii s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi sistemoi kosinusov”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 8, 53–60

[2] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2017, no. 7, 66–76

[3] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 212–244 | Zbl

[4] Akniev G.G., Gadzhimirzaev R.M., “Algoritm chislennoi realizatsii polinomov po funktsiyam, ortogonalnym po Sobolevu i porozhdennym kosinusami”, Dagestanskie elektronnye matematicheskie izvestiya, 2018, no. 9, 1–6