Two-point boundary value problem of a non-linear differential equation with fractional derivatives, having exponential growth by solution
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 61-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the existence and uniqueness of the positive solution of a two-point boundary value problem for a differential equation with fractional derivatives of order $5/4 \leq\alpha\leq2$, \begin{equation}\label{eq0} D_{0+}^\alpha u(t) + f(t,u(t)) = 0, \ 0 t 1, \end{equation} $$u(0) = u(1) = 0$$ in the case when $f(t,u)$ has exponential growth with respect to $u$. Moreover, a numerical method for constructing this solution is indicated, and the dependence of the solution on the order of differentiation on a particular example is investigated. In the equation \eqref{eq0} the derivative is understood in the sense of Riemann-Liouville.
Keywords: two-point boundary value problem, fractional derivative, positive solution, numerical method.
@article{DEMR_2017_8_a6,
     author = {E. I. Abduragimov and R. A. Omarova},
     title = {Two-point boundary value problem of a non-linear differential equation with fractional derivatives, having exponential growth by solution},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a6/}
}
TY  - JOUR
AU  - E. I. Abduragimov
AU  - R. A. Omarova
TI  - Two-point boundary value problem of a non-linear differential equation with fractional derivatives, having exponential growth by solution
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 61
EP  - 69
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a6/
LA  - ru
ID  - DEMR_2017_8_a6
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%A R. A. Omarova
%T Two-point boundary value problem of a non-linear differential equation with fractional derivatives, having exponential growth by solution
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 61-69
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a6/
%G ru
%F DEMR_2017_8_a6
E. I. Abduragimov; R. A. Omarova. Two-point boundary value problem of a non-linear differential equation with fractional derivatives, having exponential growth by solution. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 61-69. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a6/

[1] Zhanbing Bai, Haishen Lu, “Positive solutions for boundary value problem of nonlinear fractional differential equation”, J.Math.Anal.Appl., 311 (2005), 495–505 | DOI | MR | Zbl

[2] Changyou Wang, Ruifang Wang, Shu Wang and Chunde Yang, “Positive solution of singular Boundary Value Problem for a nonlinear Fraction Differential Equation”, Hindawi Publishing Corporation Boundary Value Problems, 2011, 1–12 | MR

[3] Zhang S., “Existence of solution for a boundary value problem of fractional order”, Acta Mathematica Scientis, 26:2 (2006), 220–228 | DOI | MR | Zbl

[4] Bai Z.B. and Lu H.S., “Positive solutions for boundary value problem of nonlinear fractional differential equation”, Journal of Mathematical Analysis and Applications, 311:2 (2005), 495–505 | DOI | MR | Zbl

[5] Abduragimov E.I., Omarova R.A., “Chislennyi metod postroeniya polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo differentsialnogo uravneniya vtorogo poryadka s drobnoi proizvodnoi”, Vestnik DGU, 2014, no. 6, 40–46

[6] Abduragimov E.I., Omarova R.A., “Polozhitelnoe reshenie granichnoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya s drobnymi proizvodnymi”, Vestnik DGU, 30:6 (2015), 90–104

[7] Beibalaev V.D., “O chislennom reshenii zadachi Dirikhle dlya uravneniya Puassona s proizvodnymi drobnogo poryadka”, Vest. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. Nauki, 2:27 (2012), 183–187 | DOI | Zbl

[8] Aleroev T.S., Kraevye zadachi dlya differentsialnykh uravnenii s drobnymi proizvodnymi, Diss. doktora fiz.-mat. nauk. MGU, 2000

[9] Ahmed ANBER, Soumia BELARBI and Zoubir DAHMANI, “New Existence and Uniqueness Results for Fractional Differential Equations”, An. S't. Univ. Ovidius Constanta, versita, 21:3 (2013), 33–41 | MR | Zbl

[10] Ivan Area, Eduardo Godoy and Juan J Nieto, “Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices”, Advances in Difference Equations, 14 (2014), 1–13

[11] Youji Xu, “Existence and Multiple of Positive Solution for Nonlinear Fractional Difference Equations with Parameter”, Journal of Applied Mathematics and Physics, 2015, no. 3, 757–760