A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 53-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider iterative method that numerically solves Cauchy problem for systems of equations. Suggested method is based on using sobolev orthogonal system of functions, generated by cosine system $\{1, \sqrt{2}\cos(\pi k x), \; k \ge 1 \}$.
Keywords: Cauchy problem, numerical method, Sobolev inner product, system of differential equations.
@article{DEMR_2017_8_a5,
     author = {I. I. Sharapudinov and M. G. Magomed-Kasumov},
     title = {A numerical method for solving the {Cauchy} problem for systems of ordinary differential equations by means of a system orthogonal in the sense of {Sobolev} generated by the cosine system},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {53--60},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - M. G. Magomed-Kasumov
TI  - A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 53
EP  - 60
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/
LA  - ru
ID  - DEMR_2017_8_a5
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A M. G. Magomed-Kasumov
%T A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 53-60
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/
%G ru
%F DEMR_2017_8_a5
I. I. Sharapudinov; M. G. Magomed-Kasumov. A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 53-60. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/

[1] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[2] Sharapudinov I.I., “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24

[3] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | MR | Zbl

[4] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | DOI | Zbl

[5] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl

[6] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73

[7] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14

[8] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 66–76

[9] Sharapudinov I.I., Magomedov S.R., “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 1–15

[10] Sultanakhmedov M.S., Sharapudinov T.I., “Priblizhennoe reshenie zadachi Koshi dlya sistem ODU s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi polinomami Chebysheva pervogo roda”, Dagestanskie Elektronnye Matematicheskie Izvestiya., 2017, no. 8, 100-109