Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2017_8_a5, author = {I. I. Sharapudinov and M. G. Magomed-Kasumov}, title = {A numerical method for solving the {Cauchy} problem for systems of ordinary differential equations by means of a system orthogonal in the sense of {Sobolev} generated by the cosine system}, journal = {Daghestan Electronic Mathematical Reports}, pages = {53--60}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/} }
TY - JOUR AU - I. I. Sharapudinov AU - M. G. Magomed-Kasumov TI - A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system JO - Daghestan Electronic Mathematical Reports PY - 2017 SP - 53 EP - 60 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/ LA - ru ID - DEMR_2017_8_a5 ER -
%0 Journal Article %A I. I. Sharapudinov %A M. G. Magomed-Kasumov %T A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system %J Daghestan Electronic Mathematical Reports %D 2017 %P 53-60 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/ %G ru %F DEMR_2017_8_a5
I. I. Sharapudinov; M. G. Magomed-Kasumov. A numerical method for solving the Cauchy problem for systems of ordinary differential equations by means of a system orthogonal in the sense of Sobolev generated by the cosine system. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 53-60. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a5/
[1] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva r-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
[2] Sharapudinov I.I., “Asimptoticheskie svoistva polinomov, ortogonalnykh po Sobolevu, porozhdennykh polinomami Yakobi”, Dagestanskie elektronnye matematicheskie izvestiya, 2016, no. 6, 1–24
[3] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | MR | Zbl
[4] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 101:4 (2017), 611–629 | DOI | Zbl
[5] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2017, no. 8, 67–79 | Zbl
[6] Sharapudinov I.I., “Nekotorye spetsialnye ryady po obschim polinomam Lagerra i ryady Fure po polinomam Lagerra, ortogonalnym po Sobolevu”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 31–73
[7] Sharapudinov I.I., Magomed-Kasumov M.G., Magomedov S.R., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 1–14
[8] Sharapudinov I.I., “O priblizhenii resheniya zadachi Koshi dlya nelineinykh sistem ODU posredstvom ryadov Fure po funktsiyam, ortogonalnym po Sobolevu”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 66–76
[9] Sharapudinov I.I., Magomedov S.R., “Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs”, Dagestanskie Elektronnye Matematicheskie Izvestiya, 2017, no. 7, 1–15
[10] Sultanakhmedov M.S., Sharapudinov T.I., “Priblizhennoe reshenie zadachi Koshi dlya sistem ODU s pomoschyu ortogonalnoi v smysle Soboleva sistemy, porozhdennoi polinomami Chebysheva pervogo roda”, Dagestanskie Elektronnye Matematicheskie Izvestiya., 2017, no. 8, 100-109