On conditions for the convexity of splines with respect to three-point rational interpolants
Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 1-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the convexity of splines for three-point rational interpolants are established.
Keywords: interpolation splines, rational splines, convex interpolation.
@article{DEMR_2017_8_a0,
     author = {A.-R. K. Ramazanov and V. G. Magomedova},
     title = {On conditions for the convexity of splines with respect to three-point rational interpolants},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/}
}
TY  - JOUR
AU  - A.-R. K. Ramazanov
AU  - V. G. Magomedova
TI  - On conditions for the convexity of splines with respect to three-point rational interpolants
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 1
EP  - 6
VL  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/
LA  - ru
ID  - DEMR_2017_8_a0
ER  - 
%0 Journal Article
%A A.-R. K. Ramazanov
%A V. G. Magomedova
%T On conditions for the convexity of splines with respect to three-point rational interpolants
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 1-6
%V 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/
%G ru
%F DEMR_2017_8_a0
A.-R. K. Ramazanov; V. G. Magomedova. On conditions for the convexity of splines with respect to three-point rational interpolants. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 1-6. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/

[1] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf. (Varna, 1984), Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620

[2] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh parabolicheskikh splainov”, Splainy i ikh prilozheniya, Vychislitelnye sistemy, 142, IM SO AN SSSR, Novosibirsk, 1991, 3–14

[3] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844 | DOI | Zbl

[4] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 145–152

[5] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292, Academic Press. Inc. | DOI | MR

[6] Hussain M.Z., Sarfraz M., Shaikh T.S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics Journal, 12 (2011), 231–236 | DOI

[7] Edeoa A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122

[8] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 22–31 | MR

[9] Ramazanov A.-R.K., Magomedova V.G., “Otsenki skorosti skhodimosti splainov po trekhtochechnym ratsionalnym interpolyantam dlya nepreryvnykh i nepreryvno differentsiruemykh funktsii”, Tr. In–ta matematiki i mekhaniki UrO RAN, 23, no. 3, 2017, 224–233 | MR

[10] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matem. tsentra im. N.I. Lobachevskogo, 54, Kazanskoe matem. obschestvo, Kazan, 2017, 304–306