Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2017_8_a0, author = {A.-R. K. Ramazanov and V. G. Magomedova}, title = {On conditions for the convexity of splines with respect to three-point rational interpolants}, journal = {Daghestan Electronic Mathematical Reports}, pages = {1--6}, publisher = {mathdoc}, volume = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/} }
TY - JOUR AU - A.-R. K. Ramazanov AU - V. G. Magomedova TI - On conditions for the convexity of splines with respect to three-point rational interpolants JO - Daghestan Electronic Mathematical Reports PY - 2017 SP - 1 EP - 6 VL - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/ LA - ru ID - DEMR_2017_8_a0 ER -
%0 Journal Article %A A.-R. K. Ramazanov %A V. G. Magomedova %T On conditions for the convexity of splines with respect to three-point rational interpolants %J Daghestan Electronic Mathematical Reports %D 2017 %P 1-6 %V 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/ %G ru %F DEMR_2017_8_a0
A.-R. K. Ramazanov; V. G. Magomedova. On conditions for the convexity of splines with respect to three-point rational interpolants. Daghestan Electronic Mathematical Reports, Tome 8 (2017), pp. 1-6. http://geodesic.mathdoc.fr/item/DEMR_2017_8_a0/
[1] Miroshnichenko V.L., “Convex and monotone spline interpolation”, Constuctive Theory of Function, Proc. Int. Conf. (Varna, 1984), Publ. House of Bulgarian Acad. Sci., Sofia, 1984, 610–620
[2] Miroshnichenko V.L., “Dostatochnye usloviya monotonnosti i vypuklosti dlya interpolyatsionnykh parabolicheskikh splainov”, Splainy i ikh prilozheniya, Vychislitelnye sistemy, 142, IM SO AN SSSR, Novosibirsk, 1991, 3–14
[3] Volkov Yu.S., Bogdanov V.V., Miroshnichenko V.L., Shevaldin V.T., “Formosokhranyayuschaya interpolyatsiya kubicheskimi splainami”, Matem. zametki, 88:6 (2010), 836–844 | DOI | Zbl
[4] Volkov Yu.S., Shevaldin V.T., “Usloviya formosokhraneniya pri interpolyatsii splainami vtoroi stepeni po Subbotinu i po Marsdenu”, Tr. In–ta matematiki i mekhaniki UrO RAN, 18, no. 4, 2012, 145–152
[5] Schaback R., “Spezielle rationale Splinefunktionen”, J. Approx. Theory, 7:2 (1973), 281–292, Academic Press. Inc. | DOI | MR
[6] Hussain M.Z., Sarfraz M., Shaikh T.S., “Shape preserving rational cubic spline for positive and convex data”, Egyptian Informatics Journal, 12 (2011), 231–236 | DOI
[7] Edeoa A., Gofeb G., Tefera T., “Shape preserving $C^2$ rational cubic spline interpolation”, American Scientific Research Journal for Engineering, Technology and Sciences, 12:1 (2015), 110–122
[8] Ramazanov A.-R.K., Magomedova V.G., “Splainy po ratsionalnym interpolyantam”, Dagestanskie elektronnye matematicheskie izvestiya, 2015, no. 4, 22–31 | MR
[9] Ramazanov A.-R.K., Magomedova V.G., “Otsenki skorosti skhodimosti splainov po trekhtochechnym ratsionalnym interpolyantam dlya nepreryvnykh i nepreryvno differentsiruemykh funktsii”, Tr. In–ta matematiki i mekhaniki UrO RAN, 23, no. 3, 2017, 224–233 | MR
[10] Ramazanov A.-R.K., Magomedova V.G., “Splainy po trekhtochechnym ratsionalnym interpolyantam”, Tr. Matem. tsentra im. N.I. Lobachevskogo, 54, Kazanskoe matem. obschestvo, Kazan, 2017, 304–306