Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions ${\psi}_{r,n}(x)$ $(r=1,2,\ldots, n=0,1,\ldots)$ orthonormal on Sobolev with respect to the inner product of the form $\langle f,g\rangle=\sum_{k=0}^{r-1}\Delta^kf(0)\Delta^kg(0)+ \sum_{j=0}^\infty\Delta^rf(j)\Delta^rg(j)\rho(j)$, generated by a given orthonormal system of functions ${\psi}_{n}(x)$ $( n=0,1,\ldots)$. It is shown that the Fourier series and Fourier sums by the system ${\psi}_{r,n}(x)$ $(r = 1,2, \ldots, n = 0,1, \ldots)$ are convenient and a very effective tool for the approximate solution of the Cauchy problem for difference equations.
Keywords: Sobolev orthogonal functions, functions orthogonal on the grid, approximation of discrete functions, mixed series by the functions ortho-\linebreak gonal on a uniform grid, iterative process for the approximate solution of difference equations.
@article{DEMR_2017_7_a2,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva and R. M. Gadzhimirzaev},
     title = {Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the {Cauchy} problem for the difference equation},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
AU  - R. M. Gadzhimirzaev
TI  - Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 29
EP  - 39
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/
LA  - en
ID  - DEMR_2017_7_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%A R. M. Gadzhimirzaev
%T Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 29-39
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/
%G en
%F DEMR_2017_7_a2
I. I. Sharapudinov; Z. D. Gadzhieva; R. M. Gadzhimirzaev. Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 29-39. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/

[1] Sharapudinov I.I., Gadzhieva Z.D., “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 16:3 (2016), 310–321 (in Russian) | DOI | MR | Zbl

[2] Sharapudinov I.I., Gadzhieva Z.D., Gadzhimirzaev R.M., “Difference equations and Sobolev orthogonal polynomials, generated by Meixner polynomials”, Vladikavkaz Mathematical Journal, 19:2 (2017), 58–72 (in Russian) | MR

[3] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[4] Marcellan F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[5] Meijer H.G., “Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[6] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl

[7] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl

[8] Marcellan F., Yuan Xu, “On Sobolev orthogonal polynomials”, 2014, 1–40, arXiv: 6249v1 [math.C.A] 25 Mar 2014 | MR

[9] Sharapudinov I.I., “Approximation of discrete functions and Chebyshev polynomials orthogonal on the uniform grid”, Math. Notes, 67:3 (2000), 389–397 | DOI | MR | Zbl

[10] Sharapudinov I.I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sbornik: Mathematics, 194:3 (2003), 423–456 | DOI | MR | Zbl

[11] Sharapudinov I.I., Smeshannie ryadi po ortogonalnim polinomam, 2004, 176 pp.

[12] Sharapudinov I.I., “Mixed series of Chebyshev polynomials orthogonal on a uniform grid”, Math. Notes, 78:3-4 (2005), 403–423 | DOI | MR | Zbl

[13] Sharapudinov I.I., “Approximation properties of mixed series in terms of Legendre polynomials on the classes $W^r$”, Sbornik: Mathematics, 197:3 (2006), 433–452 | DOI | MR | Zbl

[14] Sharapudinov T.I., “Approximative properties of mixed series in Chebyshev polynomials orthogonal on a uniform grid”, Ves. Dag. nauch. centra RAN, 29 (2007), 12–23 | MR

[15] Sharapudinov I.I., Muratova G.N., “Same properties $r$-fold integration series on Fourier–Haar system”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 9:1 (2009), 68–76 (in Russian)

[16] Sharapudinov I.I., Sharapudinov T.I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Math. Notes., 88:1 (2010), 112–139 | DOI | MR | Zbl

[17] Sharapudinov I.I., “Sistemi funktsii, ortogonalnie po Sobolevu, porojdennie ortogonalnimy funkciami”, Materialy 18-oi mejdunarodnoi Saratovskoi zimney shkoli «Sovremennie problemi teorii funkciy i ih prilojeniya», Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 329–332 (in Russian)

[18] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennyh differentsialnyh uravneniy s ispolzovaniem smeshannyh ryadov po sisteme Haara”, Materialy 18-oi mejdunarodnoi Saratovskoi zimney shkoli «Sovremennie problemi teorii funkciy i ih prilojeniya», Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 176–178 (in Russian)

[19] Sultanahmedov M.S., “Cauchy problem for the difference equation and Sobolev orthogonal functions on the finite grid, generated by discrete orthogonal functions”, Daghestan Electronic Mathematical Reports, 7 (2017), 77–85 | DOI