Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 29-39

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the system of functions ${\psi}_{r,n}(x)$ $(r=1,2,\ldots, n=0,1,\ldots)$ orthonormal on Sobolev with respect to the inner product of the form $\langle f,g\rangle=\sum_{k=0}^{r-1}\Delta^kf(0)\Delta^kg(0)+ \sum_{j=0}^\infty\Delta^rf(j)\Delta^rg(j)\rho(j)$, generated by a given orthonormal system of functions ${\psi}_{n}(x)$ $( n=0,1,\ldots)$. It is shown that the Fourier series and Fourier sums by the system ${\psi}_{r,n}(x)$ $(r = 1,2, \ldots, n = 0,1, \ldots)$ are convenient and a very effective tool for the approximate solution of the Cauchy problem for difference equations.
Keywords: Sobolev orthogonal functions, functions orthogonal on the grid, approximation of discrete functions, mixed series by the functions ortho-\linebreak gonal on a uniform grid, iterative process for the approximate solution of difference equations.
@article{DEMR_2017_7_a2,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva and R. M. Gadzhimirzaev},
     title = {Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the {Cauchy} problem for the difference equation},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
AU  - R. M. Gadzhimirzaev
TI  - Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 29
EP  - 39
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/
LA  - en
ID  - DEMR_2017_7_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%A R. M. Gadzhimirzaev
%T Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 29-39
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/
%G en
%F DEMR_2017_7_a2
I. I. Sharapudinov; Z. D. Gadzhieva; R. M. Gadzhimirzaev. Sobolev orthogonal functions on the grid, generated by discrete orthogonal functions and the Cauchy problem for the difference equation. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 29-39. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a2/