Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs
Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider systems of functions ${\mathcal{X}}_{r,n}(x)$ $(r=1,2,\ldots, n=0,1,\ldots)$, generated by Haar functions $\chi_{n}(x)$ $(n=1,2,\ldots)$, that form the Sobolev orthonormal system with respect to the scalar product of the following form $$. It is shown that the Fourier series and sums with respect to the system ${\mathcal{X}}_{r,n}(x)$ $(n=0,1,\ldots)$ are a convenient and very effective tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).
Keywords: systems of functions orthogonal in the sense of Sobolev, Haar functions, the Cauchy problem for an ODE.
@article{DEMR_2017_7_a0,
     author = {I. I. Sharapudinov and S. R. Magomedov},
     title = {Systems of functions orthogonal in the sense of {Sobolev} associated with {Haar} functions and the {Cauchy} problem for {ODEs}},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {7},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2017_7_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - S. R. Magomedov
TI  - Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs
JO  - Daghestan Electronic Mathematical Reports
PY  - 2017
SP  - 1
EP  - 15
VL  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2017_7_a0/
LA  - en
ID  - DEMR_2017_7_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A S. R. Magomedov
%T Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs
%J Daghestan Electronic Mathematical Reports
%D 2017
%P 1-15
%V 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2017_7_a0/
%G en
%F DEMR_2017_7_a0
I. I. Sharapudinov; S. R. Magomedov. Systems of functions orthogonal in the sense of Sobolev associated with Haar functions and the Cauchy problem for ODEs. Daghestan Electronic Mathematical Reports, Tome 7 (2017), pp. 1-15. http://geodesic.mathdoc.fr/item/DEMR_2017_7_a0/

[1] Sharapudinov I.I., Muratova G.N., “Nekotorie svoistva $r$-kratno integrirovannih ryadov po sisteme Haara”, Izv. Sarat. Un-ta Nov. Ser., Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76 (in Russian)

[2] Sharapudinov I.I., “Sistemy funktsiy, ortogonalnih po Sobolevu, porozhdennie ortogonalnimi functsiyamy”, Izv. RAN. Ser. Matematicheskaia, 2018 (to appear) (in Russian)

[3] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[4] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[5] Meijer H.G., “Laguerre polynimials generalized to a certain Laguerre polynimials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[6] Kwon K.H. and Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl

[7] Lopez G., “Marcellan F. Vanassche W. Relative Asymptotics for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner-Product”, Constr. Approx., 11(1) (1995), 107–137 | DOI | MR | Zbl

[8] Kwon K.H. and Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl

[9] Marcellan F., Yuan Xu., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | MR | Zbl

[10] Sharapudinov I.I., “Mixed series in ultraspherical polynomials and their approximation properties”, Sbornik: Mathematics, 194:3 (2003), 423–456 | DOI | MR | Zbl

[11] Sharapudinov I.I., Smeshannie ryadi po ortogonalnim polimonam, Izdatelstvo Dagestanskogo nauchnogo centra, Makhachakala, 2004 (in Russian)

[12] Sharapudinov I.I., “Sistemi funktsii, ortogonalnie po Sobolevu, porojdennie ortogonalnimy funkciami”, Materialy 18-oi mejdunarodnoi Saratovskoi zimney shkoli «Sovremennie problemi teorii funkciy i ih prilojeniya», OOO «Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 329–332 (in Russian)

[13] Trefethen L.N., Spectral methods in Matlab, SIAM, Philadelphia, 2000 | MR | Zbl

[14] Trefethen L.N., Finite difference and spectral methods for ordinary and partial differential equation, Cornell University, 1996

[15] Solodovnikov V.V., Dmitriev A.N., Egupov N.D., Spektralnie metodi rascheta i proektirovanoya sistem upravleniya, Machinostroenie, Moskva, 1986 (in Russian)

[16] Pashkovskiy S., Vichislitelnie primeneniya mnogochlenov i riadov Chebisheva, Nauka, Moskva, 1983 (in Russian)

[17] Arushunian O.B., Volchenskova N.I., Zaletkin S.F., “Primenenie ryadov Chebisheva dlya integrirovaniya obiknovennih differencialnih uravnenii”, Sib. elektron. matem. izv., 11 (2014), 517–531 (in Russian)

[18] Lukomskii D.S., Terehin P.A., “Primenenie sistemi Haara k chislennomu resheniu zadachi Koshi dlya lineinogo differencialnogo uravneniya pervogo poryadka”, Materialy 18-oi mejdunarodnoi Saratovskoi zimney shkoli «Sovremennie problemi teorii funkciy i ih prilojeniya», OOO «Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 171–173 (in Russian)

[19] Magomed-Kasumov M.G., “Priblizhennoe reshenie obyknovennyh differentsialnyh uravneniy s ispolzovaniem smeshannyh ryadov po sisteme Haara”, Materialy 18-oi mejdunarodnoi Saratovskoi zimney shkoli «Sovremennie problemi teorii funkciy i ih prilojeniya», OOO «Izdatelstvo «Nauchnaya kniga», Saratov, 2016, 176–178 (in Russian)

[20] Sharapudinov I.I., Magomed-Kasumov M.G., “O predstavlenii resheniya zadachi Koshi ryadom Furie po polinomam, ortogonalnim po Sobolevu, porojdennim mnogochlenami Lagerra”, Differencialnie uravneniya, 2017 (to appear) (in Russian)

[21] Sharapudinov I.I., Sharapudinov T.I., “Mixed series of Jacobi and Chebyshev polynomials and their discretization”, Mathematical Notes, 88:1 (2010), 112–139 | DOI | Zbl

[22] Kashin B.S., Saakyan A.A., Ortogonalnie ryadi, AFC, Moskva, 1999 (in Russian)

[23] Faber G., “Ober die Orthogonalfunktionen des Herrn Haar”, Jahresber. Deutsch. Math. Verein., 19 (1910), 104–112 | Zbl