On equations of Burgers and Korteweg-de Vries type for functions of three variables
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 90-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the consideration of two-dimensional analogs for known in mathematical physics equations of Burgers and Korteweg-de Vries, for which by analogy with the concept of «one-dimensional heat equation» we can use the term «one-dimensional equations».
Keywords: Burgers equation, Korteweg-de Vries equation, heat equation.
@article{DEMR_2016_6_a5,
     author = {M. M. Zainulabidov and Z. M. Zainulabidova},
     title = {On equations of {Burgers} and {Korteweg-de} {Vries} type for functions of three variables},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {90--95},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a5/}
}
TY  - JOUR
AU  - M. M. Zainulabidov
AU  - Z. M. Zainulabidova
TI  - On equations of Burgers and Korteweg-de Vries type for functions of three variables
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 90
EP  - 95
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a5/
LA  - ru
ID  - DEMR_2016_6_a5
ER  - 
%0 Journal Article
%A M. M. Zainulabidov
%A Z. M. Zainulabidova
%T On equations of Burgers and Korteweg-de Vries type for functions of three variables
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 90-95
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a5/
%G ru
%F DEMR_2016_6_a5
M. M. Zainulabidov; Z. M. Zainulabidova. On equations of Burgers and Korteweg-de Vries type for functions of three variables. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 90-95. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a5/

[1] Martinson L.K., Malov Yu.I., Differentsialnye uravneniya matematicheskoi fiziki, Izdatelstvo MGTU im. N.E.Baumana, M., 2002, 367 pp.

[2] Zainulabidov M.M., Zainulabidov G.M., Zainulabidova Z.M., “O nekotorykh nelineinykh uravneniyakh tipa Kortevega-de Friza”, Izvestiya DGPU, estestvennye i tochnye nauki, 2013, no. 2, 6–8

[3] Zainulabidov M.M., Zainulabidova Z.M., “K teorii nelineinykh uravnenii volnovykh protsessov”, DAGITO-2014, Informatsionnye tekhnologii v obrazovanii i nauke, no. 5, 2014, 177–179

[4] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1988, 448 pp. | MR

[5] Koshlyakov N.S., Gliner E.B., Smirnov M.M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Gos. izd-vo FML, M., 1962, 767 pp. | MR