On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 83-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The uniqueness of the reconstruction of integrable in the strip in the plane functions, given its integrals along the arcs of the two-parameter family of hyperbole with weight, analytical by part of the variables is proved. The method of proof is based on the construction majorant of first kind operator of Volterra for the operator in scales of Banach spaces.
Keywords: integral transform, Volterra operator, the Banach spaces scale, majority operator, the two-parameter family of hyperbole.
@article{DEMR_2016_6_a4,
     author = {Z. G. Medzhidov},
     title = {On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {83--89},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/}
}
TY  - JOUR
AU  - Z. G. Medzhidov
TI  - On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 83
EP  - 89
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/
LA  - ru
ID  - DEMR_2016_6_a4
ER  - 
%0 Journal Article
%A Z. G. Medzhidov
%T On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 83-89
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/
%G ru
%F DEMR_2016_6_a4
Z. G. Medzhidov. On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 83-89. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/

[1] Bukhgeim A.L., Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR

[2] Sysoev S.E., “Edinstvennost vosstanovleniya summiruemoi v polose funktsii po ee integralam po okruzhnostyam s tsentrami na fiksirovannoi pryamoi”, UMN, 52:4(316) (1997), 213–214 | DOI | MR | Zbl

[3] Cormack A.M., “A paraboloidal Radon transform”, 75 year of Radon transform, Conf. Proc. (Vienna, 1992), Lecture Notes Math. Phys., 4, Int. Press, Cambridge, MA, 1994, 105–109 | MR | Zbl

[4] Palamodov V.P., “Novye podkhody k obratnym zadacham rasseyaniya”, UMN, 71:3(429) (2016), 123–148 | DOI | MR | Zbl