Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2016_6_a4, author = {Z. G. Medzhidov}, title = {On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas}, journal = {Daghestan Electronic Mathematical Reports}, pages = {83--89}, publisher = {mathdoc}, volume = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/} }
TY - JOUR AU - Z. G. Medzhidov TI - On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas JO - Daghestan Electronic Mathematical Reports PY - 2016 SP - 83 EP - 89 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/ LA - ru ID - DEMR_2016_6_a4 ER -
%0 Journal Article %A Z. G. Medzhidov %T On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas %J Daghestan Electronic Mathematical Reports %D 2016 %P 83-89 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/ %G ru %F DEMR_2016_6_a4
Z. G. Medzhidov. On the uniqueness of the reconstruction of a function summable in a strip defined by integrals along the arcs of one two-parameter family of hyperbolas. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 83-89. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a4/
[1] Bukhgeim A.L., Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR
[2] Sysoev S.E., “Edinstvennost vosstanovleniya summiruemoi v polose funktsii po ee integralam po okruzhnostyam s tsentrami na fiksirovannoi pryamoi”, UMN, 52:4(316) (1997), 213–214 | DOI | MR | Zbl
[3] Cormack A.M., “A paraboloidal Radon transform”, 75 year of Radon transform, Conf. Proc. (Vienna, 1992), Lecture Notes Math. Phys., 4, Int. Press, Cambridge, MA, 1994, 105–109 | MR | Zbl
[4] Palamodov V.P., “Novye podkhody k obratnym zadacham rasseyaniya”, UMN, 71:3(429) (2016), 123–148 | DOI | MR | Zbl