Asymptotic stability of a linear impulse system of Itô differential equations with linear delays
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 61-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions are investigated asymptotic $p$-stability ($ 2\le p \infty$) trivial solutions of rather initial data for the linear uniform pulse system of the differential equations of Ito with the linear delays. Research is conducted by method auxiliary or model equations. Sufficient stability conditions are received in terms of parameters of the studied system.
Keywords: stability of decisions, differential Ito's equations with pulse influences, linear delays.
@article{DEMR_2016_6_a3,
     author = {R. I. Kadiev},
     title = {Asymptotic stability of a linear impulse system of {It\^o} differential equations with linear delays},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {61--82},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a3/}
}
TY  - JOUR
AU  - R. I. Kadiev
TI  - Asymptotic stability of a linear impulse system of Itô differential equations with linear delays
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 61
EP  - 82
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a3/
LA  - ru
ID  - DEMR_2016_6_a3
ER  - 
%0 Journal Article
%A R. I. Kadiev
%T Asymptotic stability of a linear impulse system of Itô differential equations with linear delays
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 61-82
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a3/
%G ru
%F DEMR_2016_6_a3
R. I. Kadiev. Asymptotic stability of a linear impulse system of Itô differential equations with linear delays. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 61-82. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a3/

[1] Shiryaev A.N., Osnovy stokhasticheskoi finansovoi matematiki, FAZIS, M., 1998

[2] Khasminskii R.Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[3] Kolmanovskii V.B., Nosov V.R., Ustoichivost i periodicheskie rezhimy sistem s posledeistviem, Nauka, M., 1981 | MR

[4] Tsarkov E.F., Sluchainye vozmuscheniya differentsialno-funktsionalnykh uravnenii, Zinatne, Riga, 1989 | MR

[5] Mao X., Stochastic Differential Equations and Applications, Horwood Publishing Itd., Chichester, 1997 | MR | Zbl

[6] Kadiev R.I., Ponosov A.V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 43:7 (2007), 879–885 | MR | Zbl

[7] Kadiev R.I. Ponosov A.V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Differents. uravneniya, 46:4 (2010), 486–498, Minsk | MR | Zbl

[8] Kadiev R.I., Ponosov A.V., “Ustoichivost lineinykh funktsionalno-differentsialnykh uravnenii pri postoyanno deistvuyuschikh vozmuscheniyakh”, Differents. uravneniya, 28:2 (1992), 198–207 | MR

[9] Kadiev R.I., “Dostatochnye usloviya ustoichivosti stokhasticheskikh sistem s posledeistviem”, Differents. uravneniya, 30:4 (1994), 555–564 | MR | Zbl

[10] Kadiev R.I., Ustoichivost reshenii stokhasticheskikh funktsionalno-differentsialnykh uravnenii, Dis. ... d-r fiz.-mat. nauk, Makhachkala, 2000

[11] Vatanabe C., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, M., 1981 | MR

[12] Kadiev R.I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii po semimartingalu”, Izvestiya vuzov. Matematika, 1995, no. 10, 35–40

[13] R.Kadiev, A.Ponosov, “Stability of stochastic functional differential equations and the W-transform”, Electron J. Diff. Eqns., 2004:92 (2004), 1–36 | MR

[14] Lakshmikantham V., Bainov D.D., Simeonov P.S., Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989 | MR | Zbl

[15] Berezanski L., Idels L., “On Integrable Solutions of Impulsive Delay Differential Equations”, Communications of Appl. Math. Analysis, 2 (1998), 301–309 | MR