Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2016_6_a2, author = {I. I. Sharapudinov and Z. D. Gadzhieva and R. M. Gadzhimirzaev}, title = {Systems of functions orthogonal with respect to scalar products of {Sobolev} type with discrete masses generated by classical orthogonal systems}, journal = {Daghestan Electronic Mathematical Reports}, pages = {31--60}, publisher = {mathdoc}, volume = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/} }
TY - JOUR AU - I. I. Sharapudinov AU - Z. D. Gadzhieva AU - R. M. Gadzhimirzaev TI - Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems JO - Daghestan Electronic Mathematical Reports PY - 2016 SP - 31 EP - 60 VL - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/ LA - ru ID - DEMR_2016_6_a2 ER -
%0 Journal Article %A I. I. Sharapudinov %A Z. D. Gadzhieva %A R. M. Gadzhimirzaev %T Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems %J Daghestan Electronic Mathematical Reports %D 2016 %P 31-60 %V 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/ %G ru %F DEMR_2016_6_a2
I. I. Sharapudinov; Z. D. Gadzhieva; R. M. Gadzhimirzaev. Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 31-60. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/
[1] Sharapudinov I.I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure Lezhandra”, Matem. sbornik, 191:5 (2000), 143–160 | DOI | MR | Zbl
[2] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl
[3] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.
[4] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matem. sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl
[5] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matem. zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl
[6] Sharapudinov I.I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matem. sbornik, 194:3 (2003), 115–148 | DOI | MR | Zbl
[7] Sharapudinov I.I., Sharapudinov T.I., “Smeshannye ryady po polinomam Yakobi i Chebysheva i ikh diskretizatsiya”, Matem. zametki, 88:1 (2010), 116–147 | DOI | MR | Zbl
[8] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76
[9] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl
[10] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl
[11] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl
[12] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl
[13] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl
[14] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | MR | Zbl
[15] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | MR | Zbl
[16] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 2016 (to appear)
[17] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii, assotsiirovannye s ortogonalnoi sistemoi funktsii”, Izv. RAN. Ser. matem., 2016 (to appear)
[18] Sharapudinov I.I., Magomed-Kasumov M.G., “O predstavlenii resheniya zadachi Koshi ryadom Fure po polinomam, ortogonalnym po Sobolevu, porozhdennym mnogochlenami Lagerra”, Differentsialnye uravneniya, 2016 (to appear)
[19] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 2016 (to appear)
[20] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2016 (to appear)
[21] Gadzhimirzaev R.M., “Ryady Fure po polinomam Meiksnera, ortogonalnym po Sobolevu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 388–395 | MR
[22] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962, 500 pp.
[23] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, Moskva, 1999, 561 pp. | MR
[24] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl