Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 31-60

Voir la notice de l'article provenant de la source Math-Net.Ru

For some natural number $r$ and a given system of functions $\left\{\varphi_k(x)\right\}_{k=0}^\infty$, orthonormal on $(a, b)$ with weight $\rho(x)$, we construct the new system of functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$, orthonormal with respect to the Sobolev type inner product of the following form \begin{equation*} \langle f,g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+\int_{a}^{b} f^{(r)}(t)g^{(r)}(t)\rho(t) dt. \end{equation*} The convergence of the Fourier series by the system $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$ is investigated. Moreover, we consider some important special cases of systems of such type and obtain explicit representations for them, which can be used in the study of asymptotic properties of functions $\varphi_{r,k}(x)$ when $k\to\infty$ and the approximative properties of Fourier sums by the system $\left\{\varphi_{r,k}(x)\right\}_{k = 0}^\infty$.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Haar system, Jacobi polynomials, Сhebyshev polynomials of the first kind, Laguerre polynomials, Hermite polynomials.
@article{DEMR_2016_6_a2,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva and R. M. Gadzhimirzaev},
     title = {Systems of functions orthogonal with respect to scalar products of {Sobolev} type with discrete masses generated by classical orthogonal systems},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {31--60},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
AU  - R. M. Gadzhimirzaev
TI  - Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 31
EP  - 60
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/
LA  - ru
ID  - DEMR_2016_6_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%A R. M. Gadzhimirzaev
%T Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 31-60
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/
%G ru
%F DEMR_2016_6_a2
I. I. Sharapudinov; Z. D. Gadzhieva; R. M. Gadzhimirzaev. Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 31-60. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/