Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 31-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some natural number $r$ and a given system of functions $\left\{\varphi_k(x)\right\}_{k=0}^\infty$, orthonormal on $(a, b)$ with weight $\rho(x)$, we construct the new system of functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$, orthonormal with respect to the Sobolev type inner product of the following form \begin{equation*} \langle f,g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+\int_{a}^{b} f^{(r)}(t)g^{(r)}(t)\rho(t) dt. \end{equation*} The convergence of the Fourier series by the system $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$ is investigated. Moreover, we consider some important special cases of systems of such type and obtain explicit representations for them, which can be used in the study of asymptotic properties of functions $\varphi_{r,k}(x)$ when $k\to\infty$ and the approximative properties of Fourier sums by the system $\left\{\varphi_{r,k}(x)\right\}_{k = 0}^\infty$.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Haar system, Jacobi polynomials, Сhebyshev polynomials of the first kind, Laguerre polynomials, Hermite polynomials.
@article{DEMR_2016_6_a2,
     author = {I. I. Sharapudinov and Z. D. Gadzhieva and R. M. Gadzhimirzaev},
     title = {Systems of functions orthogonal with respect to scalar products of {Sobolev} type with discrete masses generated by classical orthogonal systems},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {31--60},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - Z. D. Gadzhieva
AU  - R. M. Gadzhimirzaev
TI  - Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 31
EP  - 60
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/
LA  - ru
ID  - DEMR_2016_6_a2
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A Z. D. Gadzhieva
%A R. M. Gadzhimirzaev
%T Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 31-60
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/
%G ru
%F DEMR_2016_6_a2
I. I. Sharapudinov; Z. D. Gadzhieva; R. M. Gadzhimirzaev. Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 31-60. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a2/

[1] Sharapudinov I.I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure Lezhandra”, Matem. sbornik, 191:5 (2000), 143–160 | DOI | MR | Zbl

[2] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matem. zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl

[3] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.

[4] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matem. sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl

[5] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matem. zametki, 84:3 (2008), 452–471 | DOI | MR | Zbl

[6] Sharapudinov I.I., “Smeshannye ryady po ultrasfericheskim polinomam i ikh approksimativnye svoistva”, Matem. sbornik, 194:3 (2003), 115–148 | DOI | MR | Zbl

[7] Sharapudinov I.I., Sharapudinov T.I., “Smeshannye ryady po polinomam Yakobi i Chebysheva i ikh diskretizatsiya”, Matem. zametki, 88:1 (2010), 116–147 | DOI | MR | Zbl

[8] Sharapudinov I.I., Muratova G.N., “Nekotorye svoistva $r$-kratno integrirovannykh ryadov po sisteme Khaara”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:1 (2009), 68–76

[9] Iserles A., Koch P.E., Norsett S.P. and Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[10] Marcellan F., Alfaro M. and Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[11] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[12] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 1995, no. 2, 289–303 | MR | Zbl

[13] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 28 (1998), 547–594 | DOI | MR | Zbl

[14] Marcellan F., Xu Y., “On Sobolev orthogonal polynomials”, Expositiones Mathematicae, 33:3 (2015), 308–352 | DOI | MR | Zbl

[15] Sharapudinov I.I., Gadzhieva Z.D., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Meiksnera”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:3 (2016), 310–321 | MR | Zbl

[16] Sharapudinov I.I., “Approksimativnye svoistva ryadov Fure po mnogochlenam, ortogonalnym po Sobolevu s vesom Yakobi i diskretnymi massami”, Matem. zametki, 2016 (to appear)

[17] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii, assotsiirovannye s ortogonalnoi sistemoi funktsii”, Izv. RAN. Ser. matem., 2016 (to appear)

[18] Sharapudinov I.I., Magomed-Kasumov M.G., “O predstavlenii resheniya zadachi Koshi ryadom Fure po polinomam, ortogonalnym po Sobolevu, porozhdennym mnogochlenami Lagerra”, Differentsialnye uravneniya, 2016 (to appear)

[19] Sharapudinov I.I., “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 2016 (to appear)

[20] Sharapudinov I.I., Sharapudinov T.I., “Polinomy, ortogonalnye po Sobolevu, porozhdennye mnogochlenami Chebysheva, ortogonalnymi na setke”, Izv. vuzov. Matem., 2016 (to appear)

[21] Gadzhimirzaev R.M., “Ryady Fure po polinomam Meiksnera, ortogonalnym po Sobolevu”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 16:4 (2016), 388–395 | MR

[22] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962, 500 pp.

[23] Kashin B.S., Saakyan A.A., Ortogonalnye ryady, AFTs, Moskva, 1999, 561 pp. | MR

[24] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23:2 (1969), 306–310 | DOI | MR | Zbl