Algorithm for coloring edges of a simple graph
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm checks the existence of bipartite graph edge-coloring such that at each vertex $v$ the colors presented at $v$ form a set of consecutive integers.
Keywords: bipartite graph, set, algorithm, colors.
@article{DEMR_2016_6_a1,
     author = {A. M. Magomedov},
     title = {Algorithm for coloring edges of a simple graph},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a1/}
}
TY  - JOUR
AU  - A. M. Magomedov
TI  - Algorithm for coloring edges of a simple graph
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 25
EP  - 30
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a1/
LA  - ru
ID  - DEMR_2016_6_a1
ER  - 
%0 Journal Article
%A A. M. Magomedov
%T Algorithm for coloring edges of a simple graph
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 25-30
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a1/
%G ru
%F DEMR_2016_6_a1
A. M. Magomedov. Algorithm for coloring edges of a simple graph. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 25-30. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a1/

[1] Asratyan A.S., Kamalyan R.R., “Intervalnye raskraski reber multigrafa”, Prikladnaya matematika, 5, Izd-vo Erevanskogo un-ta, Erevan, 1987, 25–34

[2] Svami M., Tkhulasiraman K., Grafy, seti i algoritmy, Mir, Moskva, 1984, 455 pp.

[3] Magomedov A.M., “Tsepochechnye struktury v zadachakh o raspisaniyakh”, Prikladnaya diskretnaya matematika, 3(33) (2016), 67–77

[4] Giaro K., Compact task scheduling on dedicated processors with no waiting period, PhD thesis, Technical University of Gdansk, IETI Faculty, Gdansk, 1999 (in Polish)