Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials
Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 1-24

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider polynomials $p_{r,n}^{\alpha,\beta}(x)$ $(n=0,1,\ldots)$, generated by classical Jacobi polynomials $p_{n}^{\alpha,\beta}(x)$ and forming orthonormal system with respect to Sobolev-type inner product \begin{equation*} ,g>=\sum_{\nu=0}^{r-1}f^{(\nu)}(-1)g^{(\nu)}(-1)+\int_{-1}^{1}f^{(r)}(t)g^{(r)}(t)\rho(t) dt, \end{equation*} where $\rho(x)=(1-x)^\alpha(1+x)^\beta$ – Jacobi weight function. The explicit \linebreak representations for polynomials $p_{r,n}^{\alpha,\beta}(x)$ are obtained and using these ones the asymptotic properties of polynomials $p_{r,n}^{\alpha,\beta}(x)$ are investigated.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Jacobi polynomials, Chebyshev polynomials of the first kind, Legendre polynomials.
@article{DEMR_2016_6_a0,
     author = {I. I. Sharapudinov},
     title = {Asymptotic properties of polynomials, orthogonal in {Sobolev} sence and associated with the {Jacobi} polynomials},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {1--24},
     publisher = {mathdoc},
     volume = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_6_a0/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 1
EP  - 24
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_6_a0/
LA  - ru
ID  - DEMR_2016_6_a0
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 1-24
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_6_a0/
%G ru
%F DEMR_2016_6_a0
I. I. Sharapudinov. Asymptotic properties of polynomials, orthogonal in Sobolev sence and associated with the Jacobi polynomials. Daghestan Electronic Mathematical Reports, Tome 6 (2016), pp. 1-24. http://geodesic.mathdoc.fr/item/DEMR_2016_6_a0/