Stability of solutions of the linear system of functional-difference Ito equations
Daghestan Electronic Mathematical Reports, Tome 5 (2016), pp. 25-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the article is the description of ideas of N.V. Azbelev that were developed in his works and in the works of his students with respect to research of questions of stability for the functional-linear systems of Ito difference equations. The questions of the permissibility of some pairs of spaces for linear systems of functional difference equations and moment stability of solutions to linear systems of difference Ito equations with delay were considered. Sufficient conditions for the permissibility of some pairs of spaces and stability with respect to initial data for some equations in terms of the parameters of these equations were obtained.
Keywords: stability of solutions, difference equations of Ito, permissibility of pairs of spaces.
@article{DEMR_2016_5_a3,
     author = {R. I. Kadiev},
     title = {Stability of solutions of the linear system of functional-difference {Ito} equations},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {25--48},
     publisher = {mathdoc},
     volume = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2016_5_a3/}
}
TY  - JOUR
AU  - R. I. Kadiev
TI  - Stability of solutions of the linear system of functional-difference Ito equations
JO  - Daghestan Electronic Mathematical Reports
PY  - 2016
SP  - 25
EP  - 48
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2016_5_a3/
LA  - ru
ID  - DEMR_2016_5_a3
ER  - 
%0 Journal Article
%A R. I. Kadiev
%T Stability of solutions of the linear system of functional-difference Ito equations
%J Daghestan Electronic Mathematical Reports
%D 2016
%P 25-48
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2016_5_a3/
%G ru
%F DEMR_2016_5_a3
R. I. Kadiev. Stability of solutions of the linear system of functional-difference Ito equations. Daghestan Electronic Mathematical Reports, Tome 5 (2016), pp. 25-48. http://geodesic.mathdoc.fr/item/DEMR_2016_5_a3/

[1] Kadiev R.I., “Ustoichivost reshenii lineinykh raznostnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 51:3 (2015), 293–301, Minsk | DOI | MR | Zbl

[2] Kadiev R.I., “Ustoichivost reshenii sistem lineinykh raznostnykh uravnenii Ito s posledeistviem otnositelno nachalnykh dannykh”, Differents. uravneniya, 51:7 (2015), 842–850, Minsk | DOI | MR | Zbl

[3] Kadiev R., Ponosov A., “Exponential stability of Ito-type linear functional difference equations”, Computers and Mathematics with Applications, 66:11 (2013), 2295–2306 | DOI | MR | Zbl

[4] Kadiev R.I., Shakhbanova Z.I., “Ustoichivost reshenii lineinykh funktsionalno-raznostnykh uravnenii Ito otnositelno nachalnykh dannykh”, Vestnik DGU, Estestv. nauki, 2012, no. 6, 141–146

[5] Azbelev N.V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 280 pp. | MR

[6] Berezansky L., Braverman E., “On exponential dichotomy, Bohl Perron type theorems and stability of difference equations”, J. Math. Annal. Appl., 304 (2005), 511–530 | DOI | MR | Zbl

[7] Braverman E., Karabach I.M., “Boh-Perron-type stability theorems for linear difference equations with infinite delay”, J. of Difference Eqs. and Appl., 5:5 (2012), 909–939 | DOI | MR | Zbl

[8] Kadiev R.I., “Dostatochnye usloviya ustoichivosti stokhasticheskikh sistem s posledstviem”, Differents. uravneniya, 30:2 (1994), 555–564 | Zbl

[9] Kadiev R.I., Ponosov A.V., “Ustoichivost stokhasticheskikh funktsionalno-differentsialnykh uravnenii pri postoyanno deistvuyuschikh vozmuscheniyakh”, Differents. uravneniya, 28:2 (1992), 198–207 | MR

[10] Kadiev R., Ponosov A., “The W-transform in stability analysis for stochastic linear functional difference equations”, J. Mathem. Analysis and Appl., 389:2 (2012), 1239–1250 | DOI | MR | Zbl

[11] Liptser R.Sh., Shiryaev F.N., Teoriya martingalov, M., 1986, 512 pp. | MR

[12] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1984, 752 pp. | MR