Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In current paper we consider new polynomials, generated by orthogonal on uniform grid Chebyshev polynomials. Newly introduced polynomials are themselves orthogonal with respect to the Sobolev-type inner product. The explicit form of these polynomials, convenient to study their asymptotic properties, is obtained.
Keywords: orthogonal polynomials, Sobolev-type orthogonal polynomials, Chebyshev polynomials.
@article{DEMR_2015_4_a1,
     author = {T. I. Sharapudinov},
     title = {Discrete polynomials orthogonal with respect {Sobolev-type} inner product associated with {Chebyshev} polynomials orthogonal on a uniform grid},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {15--20},
     publisher = {mathdoc},
     volume = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/}
}
TY  - JOUR
AU  - T. I. Sharapudinov
TI  - Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 15
EP  - 20
VL  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/
LA  - ru
ID  - DEMR_2015_4_a1
ER  - 
%0 Journal Article
%A T. I. Sharapudinov
%T Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 15-20
%V 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/
%G ru
%F DEMR_2015_4_a1
T. I. Sharapudinov. Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/