Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DEMR_2015_4_a1, author = {T. I. Sharapudinov}, title = {Discrete polynomials orthogonal with respect {Sobolev-type} inner product associated with {Chebyshev} polynomials orthogonal on a uniform grid}, journal = {Daghestan Electronic Mathematical Reports}, pages = {15--20}, publisher = {mathdoc}, volume = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/} }
TY - JOUR AU - T. I. Sharapudinov TI - Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid JO - Daghestan Electronic Mathematical Reports PY - 2015 SP - 15 EP - 20 VL - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/ LA - ru ID - DEMR_2015_4_a1 ER -
%0 Journal Article %A T. I. Sharapudinov %T Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid %J Daghestan Electronic Mathematical Reports %D 2015 %P 15-20 %V 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/ %G ru %F DEMR_2015_4_a1
T. I. Sharapudinov. Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid. Daghestan Electronic Mathematical Reports, Tome 4 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/
[1] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl
[2] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 1998, 547–594 | DOI | MR | Zbl
[3] Marcellan F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl
[4] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl
[5] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl
[6] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 25 Mar 2014, 40 pp., arXiv: 1403.6249v1 [math.CA]
[7] Sharapudinov I.I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure Lezhandra”, Matematicheskii sbornik, 191:5 (2000), 143–160 | DOI | MR | Zbl
[8] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matematicheskie zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl
[9] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.
[10] Sharapudinov I.I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matematicheskie zametki, 78:3 (2005), 442–465 | DOI | MR | Zbl
[11] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl
[12] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matematicheskie zametki, 197:3 (2008), 452–471 | DOI
[13] Chebyshev P.L., “O nepreryvnykh drobyakh (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR
[14] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 236–238 | MR
[15] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshikh kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 314–334 | MR
[16] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 357–374 | MR
[17] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR
[18] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh, Izdatelstvo Dag. gos. ped. un-ta, Makhachkala, 1997, 252 pp.
[19] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962, 500 pp.