Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
Daghestan Electronic Mathematical Reports, no. 4 (2015), pp. 15-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In current paper we consider new polynomials, generated by orthogonal on uniform grid Chebyshev polynomials. Newly introduced polynomials are themselves orthogonal with respect to the Sobolev-type inner product. The explicit form of these polynomials, convenient to study their asymptotic properties, is obtained.
Mots-clés : orthogonal polynomials, Sobolev-type orthogonal polynomials
Keywords: Chebyshev polynomials.
@article{DEMR_2015_4_a1,
     author = {T. I. Sharapudinov},
     title = {Discrete polynomials orthogonal with respect {Sobolev-type} inner product associated with {Chebyshev} polynomials orthogonal on a uniform grid},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {15--20},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/}
}
TY  - JOUR
AU  - T. I. Sharapudinov
TI  - Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
JO  - Daghestan Electronic Mathematical Reports
PY  - 2015
SP  - 15
EP  - 20
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/
LA  - ru
ID  - DEMR_2015_4_a1
ER  - 
%0 Journal Article
%A T. I. Sharapudinov
%T Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid
%J Daghestan Electronic Mathematical Reports
%D 2015
%P 15-20
%N 4
%U http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/
%G ru
%F DEMR_2015_4_a1
T. I. Sharapudinov. Discrete polynomials orthogonal with respect Sobolev-type inner product associated with Chebyshev polynomials orthogonal on a uniform grid. Daghestan Electronic Mathematical Reports, no. 4 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/DEMR_2015_4_a1/

[1] Kwon K.H., Littlejohn L.L., “The orthogonality of the Laguerre polynomials $\{L_n^{(-k)}(x)\}$ for positive integers $k$”, Ann. Numer. Anal., 2 (1995), 289–303 | MR | Zbl

[2] Kwon K.H., Littlejohn L.L., “Sobolev orthogonal polynomials and second-order differential equations”, Rocky Mountain J. Math., 1998, 547–594 | DOI | MR | Zbl

[3] Marcellan F., Alfaro M., Rezola M.L., “Orthogonal polynomials on Sobolev spaces: old and new directions”, Journal of Computational and Applied Mathematics, 48 (1993), 113–131 | DOI | MR | Zbl

[4] Iserles A., Koch P.E., Norsett S.P., Sanz-Serna J.M., “On polynomials orthogonal with respect to certain Sobolev inner products”, J. Approx. Theory, 65 (1991), 151–175 | DOI | MR | Zbl

[5] Meijer H.G., “Laguerre polynomials generalized to a certain discrete Sobolev inner product space”, J. Approx. Theory, 73 (1993), 1–16 | DOI | MR | Zbl

[6] Marcellan F., Yuan Xu, On Sobolev orthogonal polynomials, 25 Mar 2014, 40 pp., arXiv: 1403.6249v1 [math.CA]

[7] Sharapudinov I.I., “Priblizhenie funktsii s peremennoi gladkostyu summami Fure Lezhandra”, Matematicheskii sbornik, 191:5 (2000), 143–160 | DOI | MR | Zbl

[8] Sharapudinov I.I., “Approksimativnye svoistva operatorov ${\cal Y}_{n+2r}(f)$ i ikh diskretnykh analogov”, Matematicheskie zametki, 72:5 (2002), 765–795 | DOI | MR | Zbl

[9] Sharapudinov I.I., Smeshannye ryady po ortogonalnym polinomam, Izdatelstvo Dagestanskogo nauchnogo tsentra, Makhachkala, 2004, 176 pp.

[10] Sharapudinov I.I., “Smeshannye ryady po polinomam Chebysheva, ortogonalnym na ravnomernoi setke”, Matematicheskie zametki, 78:3 (2005), 442–465 | DOI | MR | Zbl

[11] Sharapudinov I.I., “Approksimativnye svoistva smeshannykh ryadov po polinomam Lezhandra na klassakh $W^r$”, Matematicheskii sbornik, 197:3 (2006), 135–154 | DOI | MR | Zbl

[12] Sharapudinov I.I., “Approksimativnye svoistva srednikh tipa Valle-Pussena chastichnykh summ smeshannykh ryadov po polinomam Lezhandra”, Matematicheskie zametki, 197:3 (2008), 452–471 | DOI

[13] Chebyshev P.L., “O nepreryvnykh drobyakh (1855)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 103–126 | MR

[14] Chebyshev P.L., “Ob odnom novom ryade”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 236–238 | MR

[15] Chebyshev P.L., “Ob interpolirovanii po sposobu naimenshikh kvadratov (1859)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 314–334 | MR

[16] Chebyshev P.L., “Ob interpolirovanii (1864)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 357–374 | MR

[17] Chebyshev P.L., “Ob interpolirovanii velichin ravnootstoyaschikh (1875)”, Poln. sobr. soch., v. 2, Izd. AN SSSR, M., 1947, 66–87 | MR

[18] Sharapudinov I.I., Mnogochleny, ortogonalnye na setkakh, Izdatelstvo Dag. gos. ped. un-ta, Makhachkala, 1997, 252 pp.

[19] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, Moskva, 1962, 500 pp.