Positive solutions of boundary value problems for nonlinear differential equations
Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 101-115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the existence of a positive solution of two-point boundary value problem for a nonlinear ordinary differential equation of the fourth order were improved. The new sufficient conditions for the existence and uniqueness of the positive solution of two-point boundary value problem for a special kind of nonlinear ordinary differential equation with fractional derivatives of order $\alpha$ were obtained. The new sufficient conditions for the existence and uniqueness of positive radially symmetric solution of the Dirichlet problem for a system of nonlinear differential equations with $p$-laplacian were obtained.
Keywords: positive solution, Dirichlet problem, boundary problem, \linebreak non-linear differential equation.
@article{DEMR_2014_2_a7,
     author = {E. I. Abduragimov},
     title = {Positive solutions of boundary value problems for nonlinear differential equations},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Positive solutions of boundary value problems for nonlinear differential equations
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 101
EP  - 115
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/
LA  - ru
ID  - DEMR_2014_2_a7
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Positive solutions of boundary value problems for nonlinear differential equations
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 101-115
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/
%G ru
%F DEMR_2014_2_a7
E. I. Abduragimov. Positive solutions of boundary value problems for nonlinear differential equations. Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 101-115. http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/

[1] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, M., 1962, 394 pp. | MR

[2] Pokhozhaev S.I., “Ob odnoi zadache Ovsyannikova”, PMTF, 1989, no. 2, 5–10

[3] Pokhozhaev S.I., “Ob odnom konstruktivnom metode variatsionnogo ischisleniya”, DAN SSSR, 298:6 (1988), 1330–1333 | Zbl

[4] Pokhozhaev S.I., “O tselykh radialnykh resheniyakh nekotorykh kvazilineinykh ellipticheskikh uravnenii”, Matematicheskii sbornik, 83:11 (1992), 3-18

[5] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlineare elliptic equations”, Communications on Pure and Applied Mathematics, 34:4 (1981), 525–598 | DOI | MR | Zbl

[6] Kuo-Shung Cheng and Jenn-Tsann Lin, “On the elliptic equations $\Delta u=K(x)u^{\alpha}$ and $\Delta u=K(x)\exp^{2u}$. ”, Transactions of American mathematical society, 1987, 633–668 | MR

[7] Galakhov E.I., “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matematicheskie zametki, 78:2 (2005), 202–211 | DOI | Zbl

[8] Gaponenko Yu.L., “O polozhitelnykh resheniyakh nelineinykh kraevykh zadach”, Vestnik Moskovskogo universiteta, seriya 15. Vychislitelnaya matematika i kibernetika, 1983, no. 4, 8–12 | Zbl

[9] Abduragimov E.I., “O edinstvennosti polozhitelnogo resheniya odnoi nelineinoi dvukhtochechnoi kraevoi zadachi”, Izv. vuzov. Matematika, 2002, no. 6, 3–6 | MR | Zbl

[10] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo odu chetvertogo poryadka”, Dagestanskii matematicheskii sbornik, 1 (2005), 7–12

[11] Abduragimov E.I., “O polozhitelnom reshenii dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo odu chetvertogo poryadka”, Materialy Mezhdunarodnoi konferentsii, 2005, 12–13, Makhachkala

[12] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo odu chetvertogo poryadka”, Izv. vuzov. Matematika, 2006, no. 8, 3–6 | MR

[13] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir,, M., 1982, 296 pp. | MR

[14] Dancer E. Norman, Shi Junping, “Uniqueness and nonexistence of positive solutions to semipositive problems”, London Math. Soc, 38:6 (2006), 1033–1044 | DOI | MR | Zbl

[15] Kavano Nichiro, Satsuma Junkichi, Youtsutani Shoji, “On the positive solution of an emden-type elliptic equation”, Proc. Jap. Acad, 61, Ser A:6 (1985), 186–189 | DOI | MR

[16] Jiang Ju, “On radially symmetric solutions to singular nonlinear Dirichlet problems”, Nonlinear Anal. Theory, Methods and Applications, 24 (1995), 159–163 | DOI | MR | Zbl

[17] Bakhvalov N.S., Chislennye metody, «Nauka»,, M., 1973 | MR

[18] Abduragimov E.I., “O edinstvennosti polozhitelnogo radialno-simmetrichnogo resheniya zadachi Dirikhle v share dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. Vuzov. Matematika, 2008, no. 12, 3–6 | MR | Zbl

[19] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU vtorogo poryadka so stepennym rostom”, Vestnik DGU, 2011, no. 6, 104–110

[20] Zhanbing Bai, Haishen Lu, “Positive solutions for boundary value problem of nonlinear fractional differential equation”, J. Math. Anal. Appl., 311 (2005), 495–505 | DOI | MR | Zbl