Positive solutions of boundary value problems for nonlinear differential equations
Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 101-115

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the existence of a positive solution of two-point boundary value problem for a nonlinear ordinary differential equation of the fourth order were improved. The new sufficient conditions for the existence and uniqueness of the positive solution of two-point boundary value problem for a special kind of nonlinear ordinary differential equation with fractional derivatives of order $\alpha$ were obtained. The new sufficient conditions for the existence and uniqueness of positive radially symmetric solution of the Dirichlet problem for a system of nonlinear differential equations with $p$-laplacian were obtained.
Keywords: positive solution, Dirichlet problem, boundary problem, \linebreak non-linear differential equation.
@article{DEMR_2014_2_a7,
     author = {E. I. Abduragimov},
     title = {Positive solutions of boundary value problems for nonlinear differential equations},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {101--115},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Positive solutions of boundary value problems for nonlinear differential equations
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 101
EP  - 115
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/
LA  - ru
ID  - DEMR_2014_2_a7
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Positive solutions of boundary value problems for nonlinear differential equations
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 101-115
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/
%G ru
%F DEMR_2014_2_a7
E. I. Abduragimov. Positive solutions of boundary value problems for nonlinear differential equations. Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 101-115. http://geodesic.mathdoc.fr/item/DEMR_2014_2_a7/