$G$-convergence and homogenization of one class of second order elliptic equations with complex coefficients
Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of $G$-compaction and averaging of a class of second-order elliptic operators with complex-valued coefficients are studied. It is proved $G$-compaction of this class. Averaging for operators with periodic coefficients was obtained.
Keywords: $G$-convergence, boundary value problem, prior estimates.
@article{DEMR_2014_2_a6,
     author = {M. M. Sirazhudinov and S. P. Dzhamaludinova},
     title = {$G$-convergence and homogenization of one class of second order elliptic equations with complex coefficients},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_2_a6/}
}
TY  - JOUR
AU  - M. M. Sirazhudinov
AU  - S. P. Dzhamaludinova
TI  - $G$-convergence and homogenization of one class of second order elliptic equations with complex coefficients
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 87
EP  - 100
VL  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_2_a6/
LA  - ru
ID  - DEMR_2014_2_a6
ER  - 
%0 Journal Article
%A M. M. Sirazhudinov
%A S. P. Dzhamaludinova
%T $G$-convergence and homogenization of one class of second order elliptic equations with complex coefficients
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 87-100
%V 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_2_a6/
%G ru
%F DEMR_2014_2_a6
M. M. Sirazhudinov; S. P. Dzhamaludinova. $G$-convergence and homogenization of one class of second order elliptic equations with complex coefficients. Daghestan Electronic Mathematical Reports, Tome 2 (2014), pp. 87-100. http://geodesic.mathdoc.fr/item/DEMR_2014_2_a6/

[1] V. V. Jikov, S. M. Kozlov, O. A. Olejnik, Homogenization of differential operators and integral functionals, Springer–Verlag, Berlin, 1994 | MR

[2] V. V. Zhikov, M. M. Sirazhudinov, “On $G$-compactness of a class of nondivergence elliptic operators of second order”, Math. USSR–Izv., 19:1 (1982), 27–40 | MR | Zbl

[3] V. V. Zhikov, M. M. Sirazhudinov, “The averaging of nondivergence second order elliptic and parabolic operators and the stabilization of solutions of the Cauchy problem”, Math. USSR–Sb., 44:2 (1983), 149–166 | MR | Zbl

[4] M. M. Sirazhudinov, “The $G$-convergence and averaging of some high-order nondivergence elliptic operators”, Differential Equations, 19:11 (1983), 1429–1435 | MR | Zbl

[5] M. M. Sirazhudinov, “$G$-compactness of a class of first-order elliptic systems”, Differential Equations, 26:2 (1990), 229–235 | MR

[6] Sirazhudinov M.M., “O $G$-skhodimosti i usrednenii obobschennykh operatorov Beltrami”, Mat. sb., 199:5 (2008), 127–158 | DOI | MR | Zbl

[7] Dzhamaludinova S.P., “Zadacha Puankare dlya odnogo ellipticheskogo uravneniya vtorogo poryadka”, Vestnik DGU, 2013, no. 1, 65–67

[8] Sirazhudinov M.M., Dzhamaludinova S.P., “O G–kompaktnosti odnogo klassa ellipticheskikh operatorov vtorogo poryadka s kompleksnoznachnymi koeffitsientami”, Vestnik DGU, 2014, no. 1, 77–80

[9] Vekua I.N., Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR