Asymptotic expansions for the system of Beltrami equations
Daghestan Electronic Mathematical Reports, Tome 1 (2014), pp. 79-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents estimates for the difference between the exact solution of the Riemann-Hilbert problem for the Beltrami equations with periodic coefficient, which depends on small parameter, and its approximation. For the first time to the issues of homogenization of the Beltrami equations asymptotic expansion method is involved.
Keywords: Beltrami equation, homogenization, method of asymptotic expansions.
@article{DEMR_2014_1_a3,
     author = {M. M. Sirazhudinov and S. E. Pastukhova and S. P. Dgamaludinova},
     title = {Asymptotic expansions for the system of {Beltrami} equations},
     journal = {Daghestan Electronic Mathematical Reports},
     pages = {79--83},
     publisher = {mathdoc},
     volume = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DEMR_2014_1_a3/}
}
TY  - JOUR
AU  - M. M. Sirazhudinov
AU  - S. E. Pastukhova
AU  - S. P. Dgamaludinova
TI  - Asymptotic expansions for the system of Beltrami equations
JO  - Daghestan Electronic Mathematical Reports
PY  - 2014
SP  - 79
EP  - 83
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DEMR_2014_1_a3/
LA  - ru
ID  - DEMR_2014_1_a3
ER  - 
%0 Journal Article
%A M. M. Sirazhudinov
%A S. E. Pastukhova
%A S. P. Dgamaludinova
%T Asymptotic expansions for the system of Beltrami equations
%J Daghestan Electronic Mathematical Reports
%D 2014
%P 79-83
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DEMR_2014_1_a3/
%G ru
%F DEMR_2014_1_a3
M. M. Sirazhudinov; S. E. Pastukhova; S. P. Dgamaludinova. Asymptotic expansions for the system of Beltrami equations. Daghestan Electronic Mathematical Reports, Tome 1 (2014), pp. 79-83. http://geodesic.mathdoc.fr/item/DEMR_2014_1_a3/

[1] Zhikov V.V, Kozlov S.M., Oleinik O.A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[2] Sirazhudinov M.M., “O G-skhodimosti i usrednenii obobschennykh operatorov Beltrami”, Matem. sb., 199:5 (2008), 124–155 | DOI | MR

[3] Sirazhudinov M.M., Sirazhudinov R.M., “O G-skhodimosti sistem obobschennykh uravnenii Beltrami”, Trudy MIAN, 261, 2008, 268–275

[4] Sirazhudinov M.M., “O G–kompaktnosti odnogo klassa ellipticheskikh sistem pervogo poryadka”, Diff. uravn., 26:2 (1990) | MR

[5] Zhikov V.V., Sirazhudinov M.M., “Usrednenie sistem uravnenii Beltrami”, Diff. uravn., 26:2 (1990) | Zbl

[6] Sirazhudinov M.M., “O kraevoi zadache Rimana – Gilberta”, Diff. uravn., 25:8 (1989), 1400–1406 | MR | Zbl

[7] Bakhvalov N.S., “Osrednennye kharakteristiki tel s periodicheskoi strukturoi”, DAN SSSR, 218:5 (1974), 1046–1048

[8] Bakhvalov N.C., “Osrednenie differentsialnykh uravnenii s chastnymi proizvodnymi s bystro ostsilliruyuschimi koeffitsientami”, DAN SSSR, 221:3 (1975), 516–519 | MR | Zbl

[9] Bakhvalov N.S., Panasenko G.P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[10] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR