Αναλυτική Γεωμετρία ΙΙ Γ) Η γραμμική Άλγεβρα σαν προέκταση της κλασικής Αναλυτικής Γεωμετρίας
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 16 (1975), pp. 28-99
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{DEME_1975_16_a8,
author = { },
title = {A\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\lambda}\ensuremath{\upsilon}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} {\ensuremath{\Gamma}\ensuremath{\varepsilon}\ensuremath{\omega}\ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\tau}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}} {II} {\ensuremath{\Gamma})} {H} \ensuremath{\gamma}\ensuremath{\rho}\ensuremath{\alpha}\ensuremath{\mu}\ensuremath{\mu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta} {\'{}A\ensuremath{\lambda}\ensuremath{\gamma}\ensuremath{\varepsilon}\ensuremath{\beta}\ensuremath{\rho}\ensuremath{\alpha}} \ensuremath{\sigma}\ensuremath{\alpha}\ensuremath{\nu} \ensuremath{\pi}\ensuremath{\rho}o\ensuremath{\acute\epsilon}\ensuremath{\kappa}\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\sigma}\ensuremath{\eta} \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} \ensuremath{\kappa}\ensuremath{\lambda}\ensuremath{\alpha}\ensuremath{\sigma}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} {A\ensuremath{\nu}\ensuremath{\alpha}\ensuremath{\lambda}\ensuremath{\upsilon}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma}} {\ensuremath{\Gamma}\ensuremath{\varepsilon}\ensuremath{\omega}\ensuremath{\mu}\ensuremath{\varepsilon}\ensuremath{\tau}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma}} },
journal = {\ensuremath{\Delta}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\tau}\ensuremath{\acute\iota}o \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} E\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} E\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma}},
pages = {28--99},
year = {1975},
volume = {16},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/DEME_1975_16_a8/}
}
. Αναλυτική Γεωμετρία ΙΙ Γ) Η γραμμική Άλγεβρα σαν προέκταση της κλασικής Αναλυτικής Γεωμετρίας. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 16 (1975), pp. 28-99. http://geodesic.mathdoc.fr/item/DEME_1975_16_a8/