In a dual-nuclear space, every bounded set is nuclear
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 10 (1969) no. A, pp. 116-121
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{DEME_1969_10_A_a8,
author = {Theodoros S. Bolis},
title = {In a dual-nuclear space, every bounded set is nuclear},
journal = {\ensuremath{\Delta}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\tau}\ensuremath{\acute\iota}o \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} E\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} E\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma}},
pages = {116--121},
year = {1969},
volume = {10},
number = {A},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/DEME_1969_10_A_a8/}
}
Theodoros S. Bolis. In a dual-nuclear space, every bounded set is nuclear. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 10 (1969) no. A, pp. 116-121. http://geodesic.mathdoc.fr/item/DEME_1969_10_A_a8/