A rational twisted sextic with six inflexions which does not belong to a linear complex
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 08 (1967) no. A, pp. 49-54
Cet article a éte moissonné depuis la source Hellenic Digital Mathematics Library
@article{DEME_1967_08_A_a3,
author = {C. Wylie and G. Stratopoulos},
title = {A rational twisted sextic with six inflexions which does not belong to a linear complex},
journal = {\ensuremath{\Delta}\ensuremath{\varepsilon}\ensuremath{\lambda}\ensuremath{\tau}\ensuremath{\acute\iota}o \ensuremath{\tau}\ensuremath{\eta}\ensuremath{\varsigma} E\ensuremath{\lambda}\ensuremath{\lambda}\ensuremath{\eta}\ensuremath{\nu}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} M\ensuremath{\alpha}\ensuremath{\theta}\ensuremath{\eta}\ensuremath{\mu}\ensuremath{\alpha}\ensuremath{\tau}\ensuremath{\iota}\ensuremath{\kappa}\ensuremath{\acute\eta}\ensuremath{\varsigma} E\ensuremath{\tau}\ensuremath{\alpha}\ensuremath{\iota}\ensuremath{\rho}\ensuremath{\acute\iota}\ensuremath{\alpha}\ensuremath{\varsigma}},
pages = {49--54},
year = {1967},
volume = {08},
number = {A},
language = {gr},
url = {http://geodesic.mathdoc.fr/item/DEME_1967_08_A_a3/}
}
TY - JOUR AU - C. Wylie AU - G. Stratopoulos TI - A rational twisted sextic with six inflexions which does not belong to a linear complex JO - Δελτίο της Ελληνικής Μαθηματικής Εταιρίας PY - 1967 SP - 49 EP - 54 VL - 08 IS - A UR - http://geodesic.mathdoc.fr/item/DEME_1967_08_A_a3/ LA - gr ID - DEME_1967_08_A_a3 ER -
C. Wylie; G. Stratopoulos. A rational twisted sextic with six inflexions which does not belong to a linear complex. Δελτίο της Ελληνικής Μαθηματικής Εταιρίας, Tome 08 (1967) no. A, pp. 49-54. http://geodesic.mathdoc.fr/item/DEME_1967_08_A_a3/