Worst-Case Minimum Rectilinear Steiner Trees in All Dimensions.
Discrete & computational geometry, Tome 8 (1992) no. 1, pp. 73-92.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : Manhattan metric, Steiner tree
@article{DCG_1992__8_1_131210,
     author = {M. Yvinec},
     title = {Worst-Case {Minimum} {Rectilinear} {Steiner} {Trees} in {All} {Dimensions.}},
     journal = {Discrete & computational geometry},
     pages = {73--92},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1992},
     zbl = {0783.05041},
     url = {http://geodesic.mathdoc.fr/item/DCG_1992__8_1_131210/}
}
TY  - JOUR
AU  - M. Yvinec
TI  - Worst-Case Minimum Rectilinear Steiner Trees in All Dimensions.
JO  - Discrete & computational geometry
PY  - 1992
SP  - 73
EP  - 92
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DCG_1992__8_1_131210/
ID  - DCG_1992__8_1_131210
ER  - 
%0 Journal Article
%A M. Yvinec
%T Worst-Case Minimum Rectilinear Steiner Trees in All Dimensions.
%J Discrete & computational geometry
%D 1992
%P 73-92
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DCG_1992__8_1_131210/
%F DCG_1992__8_1_131210
M. Yvinec. Worst-Case Minimum Rectilinear Steiner Trees in All Dimensions.. Discrete & computational geometry, Tome 8 (1992) no. 1, pp. 73-92. http://geodesic.mathdoc.fr/item/DCG_1992__8_1_131210/