The Maximum Number of Ways To Stab n Convex Nonintersecting Sets in the Plane Is 2n - 2*.
Discrete & computational geometry, Tome 5 (1990) no. 2, pp. 35-42.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : transversal, geometric permutation, maximum number
@article{DCG_1990__5_2_131105,
     author = {H. Edelsbrunner and M. Sharir},
     title = {The {Maximum} {Number} of {Ways} {To} {Stab} n {Convex} {Nonintersecting} {Sets} in the {Plane} {Is} 2n - 2*.},
     journal = {Discrete & computational geometry},
     pages = {35--42},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1990},
     zbl = {0712.52009},
     url = {http://geodesic.mathdoc.fr/item/DCG_1990__5_2_131105/}
}
TY  - JOUR
AU  - H. Edelsbrunner
AU  - M. Sharir
TI  - The Maximum Number of Ways To Stab n Convex Nonintersecting Sets in the Plane Is 2n - 2*.
JO  - Discrete & computational geometry
PY  - 1990
SP  - 35
EP  - 42
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DCG_1990__5_2_131105/
ID  - DCG_1990__5_2_131105
ER  - 
%0 Journal Article
%A H. Edelsbrunner
%A M. Sharir
%T The Maximum Number of Ways To Stab n Convex Nonintersecting Sets in the Plane Is 2n - 2*.
%J Discrete & computational geometry
%D 1990
%P 35-42
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DCG_1990__5_2_131105/
%F DCG_1990__5_2_131105
H. Edelsbrunner; M. Sharir. The Maximum Number of Ways To Stab n Convex Nonintersecting Sets in the Plane Is 2n - 2*.. Discrete & computational geometry, Tome 5 (1990) no. 2, pp. 35-42. http://geodesic.mathdoc.fr/item/DCG_1990__5_2_131105/