The Complexity of Cutting Complexes.
Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 139-182.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : computational geometry, combinatorial geometry, convex subdivision, three-dimensional convex polytope, extremal functions, polynomial algorithms
@article{DCG_1989__4_6_131069,
     author = {B. Chazelle and Herbert Edelsbrunner and Guibas Leonidas J.},
     title = {The {Complexity} of {Cutting} {Complexes.}},
     journal = {Discrete & computational geometry},
     pages = {139--182},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1989},
     zbl = {0663.68055},
     url = {http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/}
}
TY  - JOUR
AU  - B. Chazelle
AU  - Herbert Edelsbrunner
AU  - Guibas Leonidas J.
TI  - The Complexity of Cutting Complexes.
JO  - Discrete & computational geometry
PY  - 1989
SP  - 139
EP  - 182
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/
ID  - DCG_1989__4_6_131069
ER  - 
%0 Journal Article
%A B. Chazelle
%A Herbert Edelsbrunner
%A Guibas Leonidas J.
%T The Complexity of Cutting Complexes.
%J Discrete & computational geometry
%D 1989
%P 139-182
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/
%F DCG_1989__4_6_131069
B. Chazelle; Herbert Edelsbrunner; Guibas Leonidas J. The Complexity of Cutting Complexes.. Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 139-182. http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/