The Complexity of Cutting Complexes.
Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 139-182
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
computational geometry, combinatorial geometry, convex subdivision, three-dimensional convex polytope, extremal functions, polynomial algorithms
@article{DCG_1989__4_6_131069,
author = {B. Chazelle and Herbert Edelsbrunner and Guibas Leonidas J.},
title = {The {Complexity} of {Cutting} {Complexes.}},
journal = {Discrete & computational geometry},
pages = {139--182},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1989},
zbl = {0663.68055},
url = {http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/}
}
TY - JOUR AU - B. Chazelle AU - Herbert Edelsbrunner AU - Guibas Leonidas J. TI - The Complexity of Cutting Complexes. JO - Discrete & computational geometry PY - 1989 SP - 139 EP - 182 VL - 4 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/ ID - DCG_1989__4_6_131069 ER -
B. Chazelle; Herbert Edelsbrunner; Guibas Leonidas J. The Complexity of Cutting Complexes.. Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 139-182. http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131069/