An O(n log n) Algorithm for the All-Nearest-Neighbors Problem.
Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 101-116.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : computational geometry, Minkowski metric, all-nearest-neighbors problem, algebraic decision-tree model of computation
@article{DCG_1989__4_6_131067,
     author = {P.M. Vaidya},
     title = {An {O(n} log n) {Algorithm} for the {All-Nearest-Neighbors} {Problem.}},
     journal = {Discrete & computational geometry},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1989},
     zbl = {0663.68058},
     url = {http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131067/}
}
TY  - JOUR
AU  - P.M. Vaidya
TI  - An O(n log n) Algorithm for the All-Nearest-Neighbors Problem.
JO  - Discrete & computational geometry
PY  - 1989
SP  - 101
EP  - 116
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131067/
ID  - DCG_1989__4_6_131067
ER  - 
%0 Journal Article
%A P.M. Vaidya
%T An O(n log n) Algorithm for the All-Nearest-Neighbors Problem.
%J Discrete & computational geometry
%D 1989
%P 101-116
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131067/
%F DCG_1989__4_6_131067
P.M. Vaidya. An O(n log n) Algorithm for the All-Nearest-Neighbors Problem.. Discrete & computational geometry, Tome 4 (1989) no. 6, pp. 101-116. http://geodesic.mathdoc.fr/item/DCG_1989__4_6_131067/