An algorithm to search a solution to the production scheduling problem
Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 4, pp. 134-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model of raw materials processing is proposed. The production consists of units processing raw materials, storage tanks, and mixing units. The processing units are assumed to operate in one of two known modes. Switching from one mode to another can be carried out no more than once. The problem of finding the optimal capacity of production at each of units, as well as the time of switching units from one operating mode to another is formulated in a form of discrete optimization problem. The solution of this problem should ensure an achievement of the specified production plan. A method for its solution is proposed, including a transition to a convex statement, as well as an algorithm for discretizing the obtained control. Tab. 2, illustr. 4, bibliogr. 13.
Keywords: task scheduling, material balance, optimal control, discrete optimization, quadratic programming.
@article{DA_2024_31_4_a6,
     author = {N. P. Savenkova and A. Yu. Mokin and A. A. Dryazhenkov and L. A. Artemyeva},
     title = {An~algorithm to~search a~solution to~the~production scheduling problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {134--150},
     year = {2024},
     volume = {31},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2024_31_4_a6/}
}
TY  - JOUR
AU  - N. P. Savenkova
AU  - A. Yu. Mokin
AU  - A. A. Dryazhenkov
AU  - L. A. Artemyeva
TI  - An algorithm to search a solution to the production scheduling problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2024
SP  - 134
EP  - 150
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DA_2024_31_4_a6/
LA  - ru
ID  - DA_2024_31_4_a6
ER  - 
%0 Journal Article
%A N. P. Savenkova
%A A. Yu. Mokin
%A A. A. Dryazhenkov
%A L. A. Artemyeva
%T An algorithm to search a solution to the production scheduling problem
%J Diskretnyj analiz i issledovanie operacij
%D 2024
%P 134-150
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/DA_2024_31_4_a6/
%G ru
%F DA_2024_31_4_a6
N. P. Savenkova; A. Yu. Mokin; A. A. Dryazhenkov; L. A. Artemyeva. An algorithm to search a solution to the production scheduling problem. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 4, pp. 134-150. http://geodesic.mathdoc.fr/item/DA_2024_31_4_a6/

[1] A. N. Smirnov, “Three-dimensional scheduling — The basis for operational management”, Vestn. Sankt-Peterburg. Univ., Ser. 10, 2005, no. 1–2, 161–170 (In Russian)

[2] A. N. Smirnov, “Mathematical model of three-dimensional scheduling of technologically linked activities”, Avtom. Telemekh., 46:10 (1985), 1297–1303

[3] E. E. Dudnikov and Yu. M. Tsodikov, Typical Tasks in Operational Management of Continuous Production, Ehnergiya, M., 1979 (In Russian)

[4] V. I. Kuvykin, “Optimal scheduling and analysis of continuous production models”, Avtom. Prom., 2015, no. 8, 161–170 (In Russian)

[5] E. A. Antamoshkina and K. V. Sharypova, “Heuristic algorithm for scheduling discrete production”, Inform. Sist. Upr., 23:1 (2010), 67–73 (In Russian)

[6] V. I. Levin, “Some thoughts on scheduling theory”, Vestn. Tambov. Gos. Tekh. Univ., 11:2 (2005), 341–347 (In Russian)

[7] R. A. Shaidullin, A. S. Khokhlov, and M. V. Prokazina, “Simulation models in the complex of oil refinery scheduling”, Avtom. Prom., 2012, no. 10, 15–21 (In Russian)

[8] Kaneva O. N., Zykina A. V., Volodchenko M. M., “The problem of mixed integer programming for optimal schedule of petroleum products manufacturing”, Proc. Workshop Applied Mathematics and Fundamental Computer Science (Omsk, Russia, Apr. 24–29, 2021), CEUR Workshop Proc., 2928, RWTH Aachen Univ., Aachen, 2021, 2, 7 pp. (accessed: Oct. 1, 2024) https://ceur-ws.org/vol-2928/paper2.pdf

[9] M. Kh. Prilutskii, “Multicriteria distribution of a homogeneous resource in hierarchical systems”, Autom. Remote Control, 57:2 (1996), 266–271 ; 434 с.

[10] F. P. Vasilyev, Optimization Methods, in 2 books, MTsNMO, M., 2011 (In Russian)

[11] N. P. Savenkova, L. A. Artemyeva, V. S. Laponin, A. Yu. Mokin, and A. A. Dryazhenkov, “Mathematical modeling of material balances”, Bus. Zh. Neftegaz.RU, 2018, no. 4, 91 (In Russian)

[12] Yu. G. Evtushenko, Methods for Solution of Extremal Problems and Its Application in Optimization Systems, Nauka, M., 1982 (In Russian)

[13] Nocedal J., Wright S. J., Numerical optimization, Springer, New York, 2006, 664 pp. | MR