Variable neighborhood descent for finding the threshold stability radius in the facility location and discriminatory pricing problem
Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 4, pp. 116-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new threshold stability problem in the context of facility location and discriminatory pricing is considered. In the statement of facility location and pricing problem, the company decides to open facilities and assign prices to each customer at each facility. The implementation of discriminatory pricing leads to a scenario where each customer is compelled to expend the maximum amount of their available financial resources, thereby ensuring the maximum revenue for the company. In the threshold stability problem, the available financial resources or budget of each consumer is a parameter with a known expected value. The objective is to maximize the deviation of the parameters from the expected value, provided that the company's income remains above a given threshold. An algorithm based on variable neighborhood descent (VND) is proposed to solve the threshold stability problem. Numerical investigation of the algorithm is carried out on known instances and randomly generated ones. Various ways of constructing the starting facility location and different criteria for comparing the location vectors are analyzed. Tab. 3, illustr. 6, bibliogr. 12.
Keywords: threshold stability, location and pricing, variable neighborhood descent.
@article{DA_2024_31_4_a5,
     author = {A. A. Panin and D. A. Piskeeva and A. V. Plyasunov},
     title = {Variable neighborhood descent for finding the~threshold stability radius in~the~facility location and discriminatory pricing problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {116--133},
     year = {2024},
     volume = {31},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2024_31_4_a5/}
}
TY  - JOUR
AU  - A. A. Panin
AU  - D. A. Piskeeva
AU  - A. V. Plyasunov
TI  - Variable neighborhood descent for finding the threshold stability radius in the facility location and discriminatory pricing problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2024
SP  - 116
EP  - 133
VL  - 31
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DA_2024_31_4_a5/
LA  - ru
ID  - DA_2024_31_4_a5
ER  - 
%0 Journal Article
%A A. A. Panin
%A D. A. Piskeeva
%A A. V. Plyasunov
%T Variable neighborhood descent for finding the threshold stability radius in the facility location and discriminatory pricing problem
%J Diskretnyj analiz i issledovanie operacij
%D 2024
%P 116-133
%V 31
%N 4
%U http://geodesic.mathdoc.fr/item/DA_2024_31_4_a5/
%G ru
%F DA_2024_31_4_a5
A. A. Panin; D. A. Piskeeva; A. V. Plyasunov. Variable neighborhood descent for finding the threshold stability radius in the facility location and discriminatory pricing problem. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 4, pp. 116-133. http://geodesic.mathdoc.fr/item/DA_2024_31_4_a5/

[1] Ben-Tal A., Nemirovski A., “Robust optimization — Methodology and applications”, Math. Program. Ser. B, 92:3 (2002), 453–480 | DOI | MR

[2] Carrizosa E., Nickel S., “Robust facility location”, Math. Methods Oper. Res., 58:2 (2003), 331–349 | DOI | MR

[3] Carrizosa E., Ushakov A., Vasilyev I., “Threshold robustness in discrete facility location problems: A bi-objective approach”, Optim. Lett., 9:7 (2015), 1297–1314 | DOI | MR

[4] Hanjoul P., Hansen P., Peeters D., Thisse J.-F., “Uncapacitated plant location under alternative spatial price policies”, Manage. Sci., 36:1 (1990), 41–57 | DOI | MR

[5] Panin A. A., Plyasunov A. V., “The multilevel facility location and pricing problems: The computational complexity and the stability analysis”, Optim. Lett., 17:6 (2023), 1295–1315 | DOI | MR

[6] Vodyan M. E., Panin A. A., Plyasunov A. V., “Metaheuristics for finding the stability radius in the bilevel facility location and uniform pricing problem”, Proc. 19th Int. Asian School-Seminar Optimization Problems of Complex Systems (Novosibirsk, Russia, Aug. 14–22, 2023), IEEE, Piscataway, 2023, 130–135 | DOI | MR

[7] Panin A. A., Plyasunov A. V., “Stability analysis for pricing”, Mathematical optimization theory and operations research, Rev. Sel. Pap. 19th Int. Conf. (Novosibirsk, Russia, July 6–10, 2020), Commun. Comput. Inf. Sci., 1275, Springer, Cham, 2020, 57–69 | DOI | MR

[8] Diakova Z. S., Kochetov Yu. A., “A double VNS heuristic for the facility location and pricing problem”, Electron. Notes Discrete Math., 39 (2012), 29–34 | DOI | MR

[9] Yu. A. Kochetov, A. A. Panin, and A. V. Plyasunov, “Comparison of metaheuristics for the bilevel facility location and mill pricing problem”, J. Appl. Ind. Math., 9:3 (2015), 392–401 | DOI | MR

[10] Yu. A. Kochetov, N. Mladenović, and P. Hansen, “Local search with alternating neighborhoods”, Diskretn. Anal. Issled. Oper., Ser. 2, 10:1 (2003), 11–43 (In Russian) | MR

[11] A. V. Plyasunov and A. A. Panin, “The pricing problem. Part II: Computational complexity”, J. Appl. Ind. Math., 7:3 (2013), 420–430 | DOI | MR

[12] V. L. Beresnev, Yu. A. Kochetov, M. G. Pashchenko, [et al.]., Discrete Location Problems. Benchmark Library, Inst. Mat. SO RAN, Novosibirsk, 2021 (accessed: Nov. 1, 2024) math.nsc.ru/AP/benchmarks