@article{DA_2024_31_4_a2,
author = {V. P. Il'ev and S. D. Il'eva and A. V. Kononov},
title = {Approximation algorithms for graph clustering problems with clusters of bounded size},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {40--57},
year = {2024},
volume = {31},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_4_a2/}
}
TY - JOUR AU - V. P. Il'ev AU - S. D. Il'eva AU - A. V. Kononov TI - Approximation algorithms for graph clustering problems with clusters of bounded size JO - Diskretnyj analiz i issledovanie operacij PY - 2024 SP - 40 EP - 57 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/DA_2024_31_4_a2/ LA - ru ID - DA_2024_31_4_a2 ER -
%0 Journal Article %A V. P. Il'ev %A S. D. Il'eva %A A. V. Kononov %T Approximation algorithms for graph clustering problems with clusters of bounded size %J Diskretnyj analiz i issledovanie operacij %D 2024 %P 40-57 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/DA_2024_31_4_a2/ %G ru %F DA_2024_31_4_a2
V. P. Il'ev; S. D. Il'eva; A. V. Kononov. Approximation algorithms for graph clustering problems with clusters of bounded size. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 4, pp. 40-57. http://geodesic.mathdoc.fr/item/DA_2024_31_4_a2/
[1] Schaeffer S. E., “Graph clustering”, Comput. Sci. Rev., 1:1 (2005), 27–64 | DOI
[2] G. Sh. Fridman, “One problem in graph approximation”, Controlled Systems, 8, Izd. Inst. Mat., Novosibirsk, 1971, 73–75 (In Russian)
[3] G. Sh. Fridman, “Investigation of one problem in graph classification”, Modelling Methods and Information Processing, Nauka, Novosibirsk, 1976, 147–177 (In Russian)
[4] Tomescu I., “La reduction minimale d'un graphe à une reunion de cliques”, Discrete Math., 10:1–2 (1974), 173–179 (French) | DOI | MR
[5] Zahn C. T., “Approximating symmetric relations by equivalence relations”, J. Soc. Ind. Appl. Math., 12:4 (1964), 840–847 | DOI | MR
[6] A. A. Ageev, V. P. Il'ev, A. V. Kononov, and A. S. Talevnin, “Computational complexity of the graph approximation problem”, J. Appl. Ind. Math., 1:1 (2023), 1–8 | DOI | MR
[7] Bansal N., Blum A., Chawla S., “Correlation clustering”, Mach. Learn, 56:1–3 (2004), 89–113 | DOI | MR
[8] Ben-Dor A., Shamir R., Yakhimi Z., “Clustering gene expression patterns”, J. Comput. Biol., 6:3–4 (1999), 281–297 | DOI
[9] Shamir R., Sharan R., Tsur D., “Cluster graph modification problems”, Discrete Appl. Math., 144:1–2 (2004), 173–182 | DOI | MR
[10] Puleo G. J., Milenkovic O., “Correlation clustering with constrained cluster sizes and extended weights bounds”, SIAM J. Optim., 25:3 (2015), 1857–1872 | DOI | MR
[11] Pandove D., Goel S., Rani R., “Correlation clustering methodologies and their fundamental results”, Expert Syst., 35:1 (2018), e12229, 24 pp. | DOI
[12] Chawla S., Makarychev K., Schramm T., Yaroslavtsev G., “Near optimal LP rounding algorithm for correlation clustering on complete and complete $k$-partite graphs”, Proc. 47th Annu. ACM Symp. Theory of Computing (Portland, OR, USA, June 14–17, 2015), ACM, New York, 2015, 219–228 | DOI | MR
[13] Il'ev V. P., Il'eva S. D., Kononov A. V., “Short survey on graph correlation clustering with minimization criteria”, Discrete optimization and operations research, Proc. 9th Int. Conf. (Vladivostok, Russia, Sept. 19–23, 2016), Lect. Notes Comput. Sci., 9869, Springer, Cham, 2016, 25–36 | DOI | MR
[14] Wahid D. F., Hassini E., “A literature review on correlation clustering: Cross-disciplinary taxonomy with bibliometric analysis”, Oper. Res. Forum, 3 (2022), 47, 42 pp. | DOI | MR
[15] Bonchi F., García-Soriano D., Gullo F., Correlation clustering, Springer, Cham, 2022, 148 pp. | DOI
[16] V. P. Il'ev and A. A. Navrotskaya, “Computational complexity of the problem of approximation by graphs with connected components of bounded size”, Prikl. Diskretn. Mat., 2011, no. 3, 80–84 (In Russian)
[17] V. P. Il'ev, S. D. Il'eva, and A. A. Navrotskaya, “Graph clustering with a constraint on cluster sizes”, J. Appl. Ind. Math., 10:3 (2016), 341–348 | DOI | MR
[18] Il'ev V. P., Il'eva S. D., “Approximation algorithms for graph cluster editing problems with cluster size at most \(3\) or \(4\)”, Mathematical optimization theory and operations research: Recent trends, Rev. Sel. Pap. 22nd Int. Conf. (Yekaterinburg, Russia, July 2–8, 2023), Commun. Comput. Inf. Sci., 1881, Springer, Cham, 2023, 134–145 | DOI | MR
[19] Kononov A. V., Il'ev V. P., “On cluster editing problem with clusters of small sizes”, Optimization and applications, Rev. Sel. Pap. 14th Int. Conf. (Petrovac, Montenegro, Sept. 18–22, 2023), Lect. Notes Comput. Sci., 14395, Springer, Cham, 2023, 316–328 | DOI | MR
[20] Chataigner F., Manić G., Wakabayashi Y., Yuster R., “Approximation algorithms and hardness results for the clique packing problem”, Discrete Appl. Math., 157:7 (2009), 1396–1406 | DOI | MR