A study of the threshold stability of the bilevel problem of facility location and discriminatory pricing
Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 3, pp. 79-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of threshold stability for a bilevel problem with a median type of facility location and discriminatory pricing is considered. When solving such a problem, it is necessary to find the threshold stability radius and a semifeasible solution of the original bilevel problem such that the leader’s revenue is not less than a predetermined value (threshold) for any deviation of budgets that does not exceed the threshold stability radius and which preserves its semifeasibility. Thus, the threshold stability radius determines the limit of disturbances of consumer budgets with which these conditions are satisfied. Two approximate algorithms for solving the threshold stability problem based on the heuristic of descent with alternating neighborhoods are developed. These algorithms are based on finding a good approximate location of facilities as well as on calculating the optimal set of prices for the found location of facilities. The algorithms differ in the way they compare various locations of facilities; this ultimately leads to different estimates of threshold stability radius. A numerical experiment has shown the efficiency of the chosen approach both in terms of the running time of the algorithms and the quality of the solutions obtained. Tab. 4, illustr. 2, bibliogr. 24.
Keywords: bilevel optimization, threshold stability problem, threshold stability radius, facility location, discriminatory pricing, variable neighborhood descent.
@article{DA_2024_31_3_a3,
     author = {M. E. Vodyan and A. A. Panin and A. V. Plyasunov},
     title = {A study of the threshold stability of~the~bilevel~problem of~facility location and~discriminatory pricing},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {79--104},
     year = {2024},
     volume = {31},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2024_31_3_a3/}
}
TY  - JOUR
AU  - M. E. Vodyan
AU  - A. A. Panin
AU  - A. V. Plyasunov
TI  - A study of the threshold stability of the bilevel problem of facility location and discriminatory pricing
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2024
SP  - 79
EP  - 104
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DA_2024_31_3_a3/
LA  - ru
ID  - DA_2024_31_3_a3
ER  - 
%0 Journal Article
%A M. E. Vodyan
%A A. A. Panin
%A A. V. Plyasunov
%T A study of the threshold stability of the bilevel problem of facility location and discriminatory pricing
%J Diskretnyj analiz i issledovanie operacij
%D 2024
%P 79-104
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/DA_2024_31_3_a3/
%G ru
%F DA_2024_31_3_a3
M. E. Vodyan; A. A. Panin; A. V. Plyasunov. A study of the threshold stability of the bilevel problem of facility location and discriminatory pricing. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 3, pp. 79-104. http://geodesic.mathdoc.fr/item/DA_2024_31_3_a3/

[1] H. J. Greenberg, “An annotated bibliography for post-solution analysis in mixed integer programming and combinatorial optimization”, Advances in computational and stochastic optimization, logic programming, and heuristic search, 1998, 97–147, Springer, New York | DOI

[2] A. Ben-Tal, A. Nemirovski, “Robust optimization: Methodology and applications”, Math. Program, 92 (2002), 453–480 | DOI

[3] L. V. Snyder, “Facility location under uncertainty: A review”, IIE Trans, 38 (2006), 537–554 | DOI

[4] M. Dyer, L. Stougie, “Computational complexity of stochastic programming problems”, Math. Program. Ser. A, 106 (2006), 423–432 | DOI

[5] A. I. Kibzun and Yu. S. Kan, Stochastic Programming Problems with Probabilistic Criteria, Fizmatlit, M., 2009 (Russian)

[6] I. Correia, F. S. da Gama, “Facility location under uncertainty”, Location science, Springer, Cham, 2015, 177–203 | DOI

[7] V. M. Charitopoulos, L. G. Papageorgiou, V. Dua, “Multiparametric mixed integer linear programming under global uncertainty”, Comput. Chem. Eng, 116 (2018), 279–295 | DOI

[8] E. Carrizosa, S. Nickel, “Robust facility location”, Math. Methods Oper. Res, 58 (2003), 331–349 | DOI

[9] E. Carrizosa, A. Ushakov, I. Vasilyev, “Threshold robustness in discrete facility location problems: A bi-objective approach”, Optim. Lett., 9 (2015), 1297–1314 | DOI

[10] A. Rossi, E. Gurevsky, O. Battaia, A. Dolgui, “Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations”, Discrete Appl. Math., 208 (2016), 123–136 | DOI

[11] A. Pirogov, E. Gurevsky, A. Rossi, A. Dolgui, “Robust balancing of transfer lines with blocks of uncertain parallel tasks under fixed cycle time and space restrictions”, Eur. J. Oper. Res., 290 (2021), 946–955 | DOI

[12] Yu. N. Sotskov, “Assembly and production line designing, balancing and scheduling with inaccurate data: A survey and perspectives”, Algorithms, 16:2 (2023), 100, 43 pp. | DOI

[13] V. K. Leontiev, “Stability of the travelling salesman problem”, USSR Comput. Math. Math. Phys., 15:5 (1975), 199–213 | DOI

[14] V. K. Leontiev and Eh. N. Gordeev, “Qualitative investigation of path problems”, Cybern., 22 (1986), 636–646 | DOI

[15] Yu. N. Sotskov, V. K. Leontiev, Eh. N. Gordeev, “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58:2 (1995), 169–190 | DOI

[16] K. G. Kuz'min, “A general approach to the calculation of stability radii for the max-cut problem with multiple criteria”, J. Appl. Ind. Math., 9:4 (2015), 527–539 | DOI

[17] A. A. Panin, A. V. Plyasunov, “Stability analysis for pricing”, Mathematical optimization theory and operations research, Rev. Sel. Pap. 19th Int. Conf. (Novosibirsk, Russia, July 6-10, 2020), Commun. Comput. Inf. Sci., 1275, Springer, Cham, 2020, 57–69 | DOI

[18] A. A. Panin, A. V. Plyasunov, “The multilevel facility location and pricing problems: the computational complexity and the stability analysis”, Optim. Lett., 17 (2023), 1295–1315 | DOI

[19] S. Dempe, A. Zemkoho, Bilevel optimization. Advances and next challenges, Springer Optim. Its Appl., 161, Springer, Cham, 2020, 672 pp. | DOI

[20] Yu. A. Kochetov, A. V. Plyasunov, A. A. Panin, “Bilevel discrete optimisation: Computational complexity and applications”, The Palgrave handbook of operations research, 2022, 3–42, Palgrave Macmillan, Cham | DOI

[21] E. G. Talbi, Metaheuristics: From design to implementation, Wiley, Berlin, 2009, 624 pp.

[22] N. Mladenovic, P. Hansen, “Variable neighbourhood search”, Comput. Oper. Res., 24 (1997), 1097–1100 | DOI

[23] Yu. A. Kochetov, A. A. Panin, and A. V. Plyasunov, “Comparison of metaheuristics for the bilevel facility location and mill pricing problem”, J. Appl. Ind. Math., 9:3 (2015), 392–401 | DOI

[24] M. E. Vodyan, A. A. Panin, A. V. Plyasunov, “Metaheuristics for finding the stability radius in the bilevel facility location and uniform pricing problem”, 2023 19th Int. Asian School-Seminar Optimization Problems of Complex Systems (Novosibirsk, Russia, Aug. 14-22, 2023), IEEE, Piscataway, 2023, 130–135 | DOI