@article{DA_2024_31_3_a2,
author = {S. O. Borodin and A. A. Taranenko},
title = {Perfect colorings of submatrix hypergraphs},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {54--78},
year = {2024},
volume = {31},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_3_a2/}
}
S. O. Borodin; A. A. Taranenko. Perfect colorings of submatrix hypergraphs. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 3, pp. 54-78. http://geodesic.mathdoc.fr/item/DA_2024_31_3_a2/
[1] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, N. V. Philips' Gloeilampenfabrieken, Eindhoven, 1973
[2] C. Godsil, “Compact graphs and equitable partitions”, Linear Algebra Appl., 255:1-3 (1997), 259–266 | DOI
[3] V. G. Vizing, “Distributive coloring of graph vertices”, Diskretn. Anal. Issled. Oper., 2:4 (1995), 3–12 (Russian)
[4] S. A. Puzynina, “Periodicity of perfect colorings of an infinite rectangular grid”, Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004), 79–92 (Russian)
[5] D. S. Krotov, “Perfect colorings of the infinite square grid: Coverings and twin colors”, Electron. J. Comb., 30:2 (2023), P2.4, 59 pp. | DOI
[6] M. A. Axenovich, “On multiple coverings of the infinite rectangular grid with balls of constant radius”, Discrete Math., 268:1-3 (2003), 31–49 | DOI
[7] S. V. Avgustinovich, I. Yu. Mogilnykh, “Perfect colorings of the John son graphs J(8,3) and J(8,4) with two colors”, J. Appl. Ind. Math., 5:1 (2011), 19–30 | DOI
[8] D. B. Khoroshilova, “On two-colour perfect colourings of circular graphs”, Diskretn. Anal. Issled. Oper., 16:1 (2009), 80–92 (Russian)
[9] Handbook of combinatorics, v. 1, Elsevier, Amsterdam, 1995, 2198 pp.
[10] V. N. Potapov, S. V. Avgustinovich, “Combinatorial designs, difference sets, and bent functions as perfect colorings of graphs and multigraphs”, Sib. Math. J., 61:5 (2020), 867–877 | DOI
[11] A. A. Taranenko, Perfect colorings of hypergraphs, Cornell Univ., Ithaca, NY, 2022, 20 pp., arXiv: 2208.03447 | DOI
[12] Handbook of combinatorial designs, Chapman Hall/CRC, Boca Raton, 2007, 1018 pp.