Mots-clés : centroid
@article{DA_2024_31_2_a7,
author = {A. V. Pyatkin},
title = {On the complexity of the problem of~choice~of~large~clusters},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {136--143},
year = {2024},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_2_a7/}
}
A. V. Pyatkin. On the complexity of the problem of choice of large clusters. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 136-143. http://geodesic.mathdoc.fr/item/DA_2024_31_2_a7/
[1] Berkhin P., “A survey of clustering data mining techniques”, Grouping multidimensional data: Recent advances in clustering, Springer, Heidelberg, 2006, 25–71 | DOI
[2] Jain A. K., Dubes R. C., Algorithms for clustering data, Prentice Hall, Englewood Cliffs, NJ, 1988, 320 pp. | MR | Zbl
[3] Ghoreyshi S., Hosseinkhani J., “Developing a clustering model based on $K$-means algorithm in order to creating different policies for policyholders in insurance industry”, Int. J. Adv. Comput. Sci. Inf. Technol., 4:2 (2015), 46–53
[4] Fisher W. D., “On grouping for maximum homogeneity”, J. Am. Stat. Assoc., 53:284 (1958), 789–798 | DOI | MR | Zbl
[5] MacQueen J., “Some methods for classification and analysis of multivariate observations”, Proc. 5th Berkeley Symp. Mathematics, Statistics and Probability (Berkeley, USA, June 21 – July 18, 1965; Dec. 27, 1965 – Jan. 7, 1966), v. 1, Univ. Calif. Press, Berkeley, 1967, 281–297 | MR | Zbl
[6] Blömer J., Lammersen C., Schmidt M., Sohler C., “Theoretical analysis of the $k$-means algorithm — A survey”, Algorithm engineering: Selected results and surveys, Lect. Notes Comput. Sci., 9220, Springer, Cham, 2016, 81–116 | DOI | MR
[7] Aloise D., Deshpande A., Hansen P., Popat P., “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., 75:2 (2009), 245–248 | DOI | Zbl
[8] Pyatkin A. V., Aloise D., Mladenovic N., “NP-hardness of balanced minimum sum-of-squares clustering”, Pattern Recognit. Lett., 97 (2017), 44–45 | DOI
[9] Bertoni A., Goldwurm M., Lin J., Saccà F., “Size constrained distance clustering: Separation properties and some complexity results”, Fund. Inform., 115:1 (2012), 125–139 | DOI | MR | Zbl
[10] A. V. Kel'manov and A. V. Pyatkin, “NP-completeness of some problems of choosing a vector subset”, J. Appl. Ind. Math., 5:3 (2011), 352–357 | DOI | MR | Zbl
[11] A. V. Kel'manov, A. V. Pyatkin, and V. I. Khandeev, “On the complexity of some max-min clustering problems”, Proc. Steklov Inst. Math., 309, Suppl. 1 (2020), S65–S73 | DOI | DOI | MR
[12] Khandeev V. I., Neshchadim S. M., “Constant-factor approximation algorithms for some maximin multi-clustering problems”, Mathematical optimization theory and operations research, Proc. 22nd Int. Conf. (Yekaterinburg, Russia, July 2–8, 2023), Lect. Notes Comput. Sci., 13930, Springer, Cham, 2023, 85–100 | DOI | MR | Zbl
[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[14] Dailey D. P., “Uniqueness of colorability and colorability of planar $4$-regular graphs are NP-complete”, Discrete Math., 30:3 (1980), 289–293 | DOI | MR | Zbl
[15] A. V. Kel'manov and A. V. Pyatkin, “On a version of the problem of choosing a vector subset”, J. Appl. Ind. Math., 3:4 (2009), 447–455 | DOI | MR | Zbl