Cooperative games with preferences: Application of the weight rule to problems of public space in St. Petersburg
Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 46-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper examines the problem of the distribution of public space. We use the methods of cooperative game theory to solve this problem. Players are districts, while the value of the characteristic function is the total number of people interested in a particular type of public space in the areas under consideration. The axioms that are characteristic of the problem of division are compiled. A special value of the cooperative game is derived that depends on the weights of the players. It is shown how to choose the weights by optimization methods. Tab. 1, illustr. 2, bibliogr. 13.
Keywords: game theory, cooperative game, weight rule, preference game.
@article{DA_2024_31_2_a2,
     author = {V. V. Gusev},
     title = {Cooperative games with preferences: {Application~of} the weight rule to~problems of~public space {in~St.~Petersburg}},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {46--62},
     year = {2024},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2024_31_2_a2/}
}
TY  - JOUR
AU  - V. V. Gusev
TI  - Cooperative games with preferences: Application of the weight rule to problems of public space in St. Petersburg
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2024
SP  - 46
EP  - 62
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DA_2024_31_2_a2/
LA  - ru
ID  - DA_2024_31_2_a2
ER  - 
%0 Journal Article
%A V. V. Gusev
%T Cooperative games with preferences: Application of the weight rule to problems of public space in St. Petersburg
%J Diskretnyj analiz i issledovanie operacij
%D 2024
%P 46-62
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/DA_2024_31_2_a2/
%G ru
%F DA_2024_31_2_a2
V. V. Gusev. Cooperative games with preferences: Application of the weight rule to problems of public space in St. Petersburg. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 46-62. http://geodesic.mathdoc.fr/item/DA_2024_31_2_a2/

[1] Garcia-Ramon M. D., Ortiz A., Prats M., “Urban planning, gender and the use of public space in a peripheral neighbourhood of Barcelona”, Cities, 21:3 (2004), 215–223 | DOI

[2] Amin A., “Collective culture and urban public space”, City, 12:1 (2008), 5–24 | DOI

[3] Gaffikin F., Mceldowney M., Sterrett K., “Creating shared public space in the contested city: The role of urban design”, J. Urban Des., 15:4 (2010), 493–513 | DOI

[4] Bergantinos G., Lorenzo L., Lorenzo-Freire S., “A characterization of the proportional rule in multi-issue allocation situations”, Oper. Res. Lett., 38:1 (2010), 17–19 | DOI | MR | Zbl

[5] Csóka P., Herings P. J. J., “An axiomatization of the proportional rule in financial networks”, Manag. Sci., 67:5 (2021), 2799–2812 | DOI

[6] Béal S., Casajus A., Huettner F., Rémila E., Solal P., “Characterizations of weighted and equal division values”, Theory Decis., 80:4 (2016), 649–667 | DOI | MR | Zbl

[7] Casajus A., Huettner F., “Null, nullifying, or dummifying players: The difference between the Shapley value, the equal division value, and the equal surplus division value”, Econ. Lett., 122:2 (2014), 167–169 | DOI | MR | Zbl

[8] Moulin H., “Equal or proportional division of a surplus, and other methods”, Int. J. Game Theory, 16 (1987), 161–186 | DOI | MR | Zbl

[9] Van den Brink R., “Null or nullifying players: the difference between the Shapley value and equal division solutions”, J. Econ. Theory, 136:1 (2007), 767–775 | DOI | MR | Zbl

[10] Moulin H., “Equal or proportional division of a surplus, and other methods”, Int. J. Game Theory, 16 (1987), 161–186 | DOI | MR | Zbl

[11] Van den Brink R., Funaki Y., “Axiomatizations of a class of equal surplus sharing solutions for TU-games”, Theory Decis, 67 (2009), 303–340 | DOI | MR | Zbl

[12] Winter E., “The Shapley value”, Handbook of game theory with economic applications, v. 3, North Holland, Amsterdam, 2002, 2025–2054 | DOI

[13] Hart S., “Shapley value”, Game theory, Macmillan Press, London, 1989, 210–216 | DOI