Stability of vertex covers in a game with finitely many steps
Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 28-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The eternal vertex cover problem is a version of the graph vertex cover problem that can be represented as a dynamic game between two players (the Attacker and the Defender) with an infinite number of steps. At each step, there is an arrangement of guards over the vertices of the graph forming a vertex cover. When the Attacker attacks one of the graph’s edges, the Defender must move the guard along the attacked edge from one vertex to the other. In addition, the Defender can move any number of other guards from their current vertices to some adjacent ones to obtain a new vertex cover. The Attacker wins if the Defender cannot build a new vertex cover after the attack. In this paper, we propose a procedure that allows us to answer the question, whether there exists a winning Defender strategy that permits protecting a given vertex cover for a given finite number of steps. To construct the Defender strategy, the problem is represented as a dynamic Stackelberg game in which at each step the interaction of the opposing sides is formalized as a two-level mathematical programming problem. The idea of the procedure is to recursively check the 1-stability of vertex covers obtained as a result of solving lower-level problems and to use some information about the covers already considered. Illustr. 6, bibliogr. 11.
Keywords: dynamic Stackelberg game, eternal vertex cover, graph edge protection, stability check algorithm.
@article{DA_2024_31_2_a1,
     author = {V. L. Beresnev and A. A. Melnikov and S. Yu. Utyupin},
     title = {Stability of vertex covers in~a~game with~finitely~many~steps},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {28--45},
     year = {2024},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - A. A. Melnikov
AU  - S. Yu. Utyupin
TI  - Stability of vertex covers in a game with finitely many steps
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2024
SP  - 28
EP  - 45
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/
LA  - ru
ID  - DA_2024_31_2_a1
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A A. A. Melnikov
%A S. Yu. Utyupin
%T Stability of vertex covers in a game with finitely many steps
%J Diskretnyj analiz i issledovanie operacij
%D 2024
%P 28-45
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/
%G ru
%F DA_2024_31_2_a1
V. L. Beresnev; A. A. Melnikov; S. Yu. Utyupin. Stability of vertex covers in a game with finitely many steps. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 28-45. http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/

[1] Klostermeyer W. F., Mynhardt C. M., “Protecting a graph with mobile guards”, Appl. Anal. Discrete Math., 10:1 (2016), 1–29 | DOI | MR | Zbl

[2] Klostermeyer W. F., Mynhardt C. M., “Edge protection in graphs”, Australas. J. Comb., 45 (2009), 235–250 | MR | Zbl

[3] Fomin F. V., Gaspers S., Golovach P. A., Kratsch D., Saurabh S., “Parameterized algorithm for eternal vertex cover”, Inf. Process. Lett., 110:17 (2010), 702–706 | DOI | MR | Zbl

[4] Babu J., Misra N., Nanoti S. G., “Eternal vertex cover in bipartite graphs”, Computer science — Theory and applications, Proc. 17th Int. Comp. Sci. Symp. in Russia (St. Petersburg, Russia, June 29 – July 1, 2022), Lect. Notes Comput. Sci., 13296, Springer, Cham, 2022, 64–76 | DOI | MR

[5] Babu J., Prabhakaran V., “A new lower bound for the eternal vertex cover number of graphs”, J. Comb. Opt., 44 (2022), 2482–2498 | DOI | MR | Zbl

[6] Babu J., Prabhakaran V., Sharma A., “A substructure based lower bound for eternal vertex cover number”, Theor. Comput. Sci, 890 (2021), 87–104 | DOI | MR | Zbl

[7] Araki H., Fujito T., Inoue S., “On the eternal vertex cover numbers of generalized trees”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E98-A:6 (2015), 1153–1160 | DOI

[8] Paul K., Pandey A., “Some algorithmic results for eternal vertex cover problem in graphs”, WALCOM: Algorithms and computation, Proc. 17th Int. Conf. and Workshops (Hsinchu, Taiwan, Mar. 22–24, 2023), Lect. Notes Comput. Sci., 13973, Springer, Cham, 2023, 242–253 | DOI | MR

[9] Beresnev V. L., Melnikov A. A., Utyupin S. Yu., “Representation of the eternal vertex cover problem as a dynamic Stackelberg game”, Optimization and applications, Rev. Sel. Pap. 14th Int. Conf. (Petrovac, Montenegro, Sept. 18–22, 2023), Lect. Notes Comput. Sci., 14395, Springer, Cham, 2023, 3–13 | DOI | MR

[10] Bezanson J., Edelman A., Karpinski S., Shah V. B., “Julia: A fresh approach to numerical computing”, SIAM Rev., 59:1 (2017), 65–98 | DOI | MR | Zbl

[11] COIN-OR Branch-and-cut solver, COIN-OR Found, Towson, 2023 (accessed Mar. 27, 2024)