@article{DA_2024_31_2_a1,
author = {V. L. Beresnev and A. A. Melnikov and S. Yu. Utyupin},
title = {Stability of vertex covers in~a~game with~finitely~many~steps},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {28--45},
year = {2024},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/}
}
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov AU - S. Yu. Utyupin TI - Stability of vertex covers in a game with finitely many steps JO - Diskretnyj analiz i issledovanie operacij PY - 2024 SP - 28 EP - 45 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/ LA - ru ID - DA_2024_31_2_a1 ER -
V. L. Beresnev; A. A. Melnikov; S. Yu. Utyupin. Stability of vertex covers in a game with finitely many steps. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 2, pp. 28-45. http://geodesic.mathdoc.fr/item/DA_2024_31_2_a1/
[1] Klostermeyer W. F., Mynhardt C. M., “Protecting a graph with mobile guards”, Appl. Anal. Discrete Math., 10:1 (2016), 1–29 | DOI | MR | Zbl
[2] Klostermeyer W. F., Mynhardt C. M., “Edge protection in graphs”, Australas. J. Comb., 45 (2009), 235–250 | MR | Zbl
[3] Fomin F. V., Gaspers S., Golovach P. A., Kratsch D., Saurabh S., “Parameterized algorithm for eternal vertex cover”, Inf. Process. Lett., 110:17 (2010), 702–706 | DOI | MR | Zbl
[4] Babu J., Misra N., Nanoti S. G., “Eternal vertex cover in bipartite graphs”, Computer science — Theory and applications, Proc. 17th Int. Comp. Sci. Symp. in Russia (St. Petersburg, Russia, June 29 – July 1, 2022), Lect. Notes Comput. Sci., 13296, Springer, Cham, 2022, 64–76 | DOI | MR
[5] Babu J., Prabhakaran V., “A new lower bound for the eternal vertex cover number of graphs”, J. Comb. Opt., 44 (2022), 2482–2498 | DOI | MR | Zbl
[6] Babu J., Prabhakaran V., Sharma A., “A substructure based lower bound for eternal vertex cover number”, Theor. Comput. Sci, 890 (2021), 87–104 | DOI | MR | Zbl
[7] Araki H., Fujito T., Inoue S., “On the eternal vertex cover numbers of generalized trees”, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E98-A:6 (2015), 1153–1160 | DOI
[8] Paul K., Pandey A., “Some algorithmic results for eternal vertex cover problem in graphs”, WALCOM: Algorithms and computation, Proc. 17th Int. Conf. and Workshops (Hsinchu, Taiwan, Mar. 22–24, 2023), Lect. Notes Comput. Sci., 13973, Springer, Cham, 2023, 242–253 | DOI | MR
[9] Beresnev V. L., Melnikov A. A., Utyupin S. Yu., “Representation of the eternal vertex cover problem as a dynamic Stackelberg game”, Optimization and applications, Rev. Sel. Pap. 14th Int. Conf. (Petrovac, Montenegro, Sept. 18–22, 2023), Lect. Notes Comput. Sci., 14395, Springer, Cham, 2023, 3–13 | DOI | MR
[10] Bezanson J., Edelman A., Karpinski S., Shah V. B., “Julia: A fresh approach to numerical computing”, SIAM Rev., 59:1 (2017), 65–98 | DOI | MR | Zbl
[11] COIN-OR Branch-and-cut solver, COIN-OR Found, Towson, 2023 (accessed Mar. 27, 2024)