@article{DA_2024_31_1_a4,
author = {E. A. Monakhova and O. G. Monakhov},
title = {A method for automatic search for families of~optimal chordal ring networks},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {85--108},
year = {2024},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_1_a4/}
}
TY - JOUR AU - E. A. Monakhova AU - O. G. Monakhov TI - A method for automatic search for families of optimal chordal ring networks JO - Diskretnyj analiz i issledovanie operacij PY - 2024 SP - 85 EP - 108 VL - 31 IS - 1 UR - http://geodesic.mathdoc.fr/item/DA_2024_31_1_a4/ LA - ru ID - DA_2024_31_1_a4 ER -
E. A. Monakhova; O. G. Monakhov. A method for automatic search for families of optimal chordal ring networks. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 1, pp. 85-108. http://geodesic.mathdoc.fr/item/DA_2024_31_1_a4/
[1] Arden B. W., Lee H., “Analysis of chordal ring network”, IEEE Trans. Comput., C-30:4 (1981), 291–295 | DOI | MR
[2] Morillo P., Comellas F., Fiol M. A., “The optimization of chordal ring networks”, Communication technology, World Scientific, Singapore, 1987, 295–299
[3] Yebra J. L. A., Fiol M. A., Morillo P., Alegre I., “The diameter of undirected graphs associated to plane tessellations”, Ars Comb., 20-B (1985), 159–171 | MR
[4] Bermond J. C., Comellas F., Hsu D. F., “Distributed loop computer-networks: A survey”, J. Parallel Distrib. Comput., 24:1 (1995), 2–10 | DOI
[5] Hwang F. K., “A survey on multi-loop networks”, Theor. Comput. Sci., 299:1–3 (2003), 107–121 | DOI | MR | Zbl
[6] Monakhova E. A., “A survey on undirected circulant graphs”, Discrete Math. Algorithms Appl., 4:1 (2012), 1250002, 30 pp. | DOI | MR | Zbl
[7] Pedersen J. M., Riaz M. T., Madsen O. B., “Distances in generalized double rings and degree three chordal rings”, Parallel and distributed computing and networks, Proc. IASTED Int. Conf. (Innsbruck, Austria, Feb. 15–17, 2005), ACTA Press, Calgary, 2005, 153–158
[8] Parhami B., “Periodically regular chordal rings are preferable to double-ring networks”, J. Interconnect. Netw., 9:1 (2008), 99–126 | DOI
[9] Farah R. N., Chien S. L. E., Othman M., “Optimum free-table routing in the optimised degree six $3$-modified chordal ring network”, J. Commun., 12:12 (2017), 677–682 | DOI | MR
[10] Hwang F. K., Wright P. E., “Survival reliability of some double-loop networks and chordal rings”, IEEE Trans. Comput., 44:12 (1995), 1468–1471 | DOI | Zbl
[11] Chen S. K., Hwang F. K., Liu Y. C., “Some combinatorial properties of mixed chordal rings”, J. Interconnect. Netw., 4:1 (2003), 3–16 | DOI
[12] Stojmenović I., “Honeycomb networks: Topological properties and communication algorithms”, IEEE Trans. Parallel Distrib. Syst., 8 (1997), 281–305 | MR
[13] Ahmad M., Zahid Z., Zavaid M., Bonyah E., “Studies of chordal ring networks via double metric dimensions”, Math. Probl. Eng., 98 (2022), 8303242, 7 pp.
[14] Bujnowski S., Marciniak B., Oyerinde O. O., Lutowski Z., Flizikowski A., Galan S. G., “The possibility of equalising the transmission properties of networks described by chordal rings”, Proc. 15th Int. Conf. Signal Processing and Communication Systems (Sydney, Australia, Dec. 13–15, 2021), IEEE, Piscataway, 2021, 8 pp. | MR
[15] Irwan N., Othman M., Farah R. N., “Network properties for classes of chordal ring network degree three topologies”, Proc. Int. Conf. Intelligent Network and Computing (Kuala Lumpur, Malaysia, Nov. 26–28, 2010), IEEE, Piscataway, 2010, 16–20
[16] Monakhov O. G., Monakhova E. A., “A class of parametric regular networks for multicomputer architectures”, Comput. Sist. J., 4:2 (2000), 85–93
[17] Huang H.-C., The diameter-edge invariant property of chordal ring networks, Master Thes., Natl. Chiao Tung Univ., Hsinchu, 2009, 30 pp.
[18] Loudiki L., Kchkech M., Essaky E. H., A new approach for computing the distance and the diameter in circulant graphs, Cornell Univ., Ithaca, NY, 2022, 14 pp., arXiv: 2210.11116
[19] Monakhov O. G., Monakhova E. A., Kireev S. E., “Parallel generation and analysis of optimal chordal ring networks using Python tools on Kunpeng prosessors”, Parallel computing technologies, Proc. 17th Int. Conf. (Astana, Kazakhstan, Aug. 21–25, 2023), Lect. Notes Comput. Sci., 14098, Springer, Cham, 2023, 126–135 | DOI
[20] Mollin R. A., “Quadratic polynomials producing consecutive, distinct primes and class groups of complex quadratic fields”, Acta Arithmetica, 74 (1996), 17–30 | DOI | MR | Zbl
[21] Marwan N., Romano M. C., Thiel M., Kurths J., “Recurrence plots for the analysis of complex systems”, Phys. Rep., 438:5–6 (2007), 237–329 | DOI | MR
[22] Barriere L., “Symmetry properties of chordal rings of degree $3$”, Discrete Appl. Math., 129 (2003), 211–232 | DOI | MR | Zbl
[23] Lee H., Modeling of multi-microcomputer networks, PhD Thes., Princeton Univ., Princeton, NJ, 1979
[24] Gutierrez J., Riaz T., Pedersen J., Labeaga S., Madsen O., “Degree $3$ networks topological routing”, Image Process. Commun., 14:4 (2009), 35–48
[25] Gutierrez J., Riaz T., Pedersen J., Labeaga S., Madsen O., “On topological routing on degree $3$ chordal rings”, Proc. 1st Int. Conf. Image Processing Communications (Bydgoszcz, Poland, Sept. 16–18, 2009), Acad. Publ. House EXIT, Warsaw, 2009, 59020255, 8 pp.
[26] Monakhova E. A., Monakhov O. G., Romanov A. Yu., “Routing algorithms in optimal degree four circulant networks based on relative addressing: comparative analysis for networks-on-chip”, IEEE Trans. Netw. Sci. Eng., 10:1 (2023), 413–425 | DOI | MR