Keywords: Bayes' theorem, guessing probability, solution in pure strategies, solution in mixed strategies.
@article{DA_2024_31_1_a2,
author = {A. P. Kovalevskii},
title = {A~probabilistic approach to~the~game of~guessing in~a~random environment},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {35--51},
year = {2024},
volume = {31},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2024_31_1_a2/}
}
A. P. Kovalevskii. A probabilistic approach to the game of guessing in a random environment. Diskretnyj analiz i issledovanie operacij, Tome 31 (2024) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/DA_2024_31_1_a2/
[1] Borovkov A. A., Mathematical statistics, Gordon and Breach, New York, 1998, 570 pp. | MR | Zbl
[2] Bradley S. P., Hax A. C., Magnanti T. L., Applied mathematical programming, Addison-Wesley, Boston, 1977, 716 pp. | MR
[3] Hörner J., Rosenberg D., Solan E., Vieille N., “On a Markov game with one-sided information”, Oper. Res., 58:4-2 (2010), 1107–1115 | DOI | MR | Zbl
[4] Li S., Chen M., Wang Y., Wu Q., “A fast algorithm to solve large-scale matrix games based on dimensionality reduction and its application in multiple unmanned combat air vehicles attack-defense decision-making”, Inf. Sci., 594 (2022), 305–321 | DOI
[5] Lipton R. J., Young N. E., “Simple strategies for large zero-sum games with applications to complexity theory”, Proc. 26th Annu. ACM Symp. Theory of Computing (Montreal, Canada, May 23–25, 1994), ACM, New York, 1994, 734–740 | Zbl
[6] Neumann J., Morgenstern O., Theory of games and economic behavior. Princeton: Princeton Univ. Press, 2007, 776 pp. | MR
[7] Wei Ch.-Y., Lee Ch.-W., Zhang M., Luo H., “Last-iterate convergence of decentralized optimistic gradient descent-ascent in infinite-horizon competitive Markov games”, Proc. Mach. Learn. Res., 134 (2021), 4259–4299