Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2023_30_2_a4, author = {E. A. Nurminski}, title = {Equivalence relations in convex optimization}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {81--90}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/} }
E. A. Nurminski. Equivalence relations in convex optimization. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 81-90. http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/
[1] Nurminski E. A., “Single-projection procedure for linear optimization”, J. Glob. Optim., 66:1 (2016), 95–110 | DOI | MR | Zbl
[2] E. A. Nurminski, “Projection onto polyhedra in outer representation”, Comput. Math. Math. Phys., 48:3 (2008), 367–375 | DOI | MR | Zbl
[3] S. S. Ablaev, D. V. Makarenko, F. S. Stonyakin, M. S. Alkousa, and I. V. Baran, “Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum”, Kompyut. Issled. Model., 14:2 (2022), 473–495 (Russian)
[4] Bui H. T., Burachik R. S., Nurminski E. A., Tam M. K., Single-projection procedure for infinite dimensional convex optimization problems, Cornell Univ, Ithaca, NY, 2022, arXiv: 2210.11252 | Zbl
[5] E. A. Nurminski, “Accelerating iterative methods for projection on polyhedrons”, Dalnevostochnyi Matematicheskii Sbornik, 1, Inst. Prikl. Mat., Vladivostok, 1995, 51–62 (Russian)
[6] Dolgopolik M. V., “Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates”, Optim. Lett., 16:4 (2022), 1281–1300 | DOI | MR | Zbl
[7] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Rev., 38 (1996), 367–426 | DOI | MR | Zbl
[8] Gould N. I. M., How good are projection methods for convex feasibility problems?, Comput. Optim. Appl., 40:1 (2008), 1–12 | DOI | MR | Zbl
[9] Censor Y., Chen W., Combettes P. L., Davidi R., Herman G. T., “On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints”, Comput. Optim. Appl., 51:3 (2012), 1065–1088 | DOI | MR | Zbl
[10] Johnstone P. R., Eckstein J., “Convergence rates for projective splitting”, SIAM J. Optim., 29:3 (2019), 1931–1957 | DOI | MR