Equivalence relations in convex optimization
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 81-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article formulates and proves several useful correlations between support functions of convex sets and projection operations over them, such as asymptotic equivalence of projection operations and computation of support functions for general convex closed bounded sets, as well as equivalence between least-norm and regularized convex suplinear optimization problems. These results generalize previously known equivalences for linear optimization problems and provide new and greatly simplified proofs for them. Illustr. 1, bibliogr. 10.
Keywords: convex optimization, regularization, projection, support function.
@article{DA_2023_30_2_a4,
     author = {E. A. Nurminski},
     title = {Equivalence relations in convex optimization},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {81--90},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - Equivalence relations in convex optimization
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 81
EP  - 90
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/
LA  - ru
ID  - DA_2023_30_2_a4
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T Equivalence relations in convex optimization
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 81-90
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/
%G ru
%F DA_2023_30_2_a4
E. A. Nurminski. Equivalence relations in convex optimization. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 81-90. http://geodesic.mathdoc.fr/item/DA_2023_30_2_a4/

[1] Nurminski E. A., “Single-projection procedure for linear optimization”, J. Glob. Optim., 66:1 (2016), 95–110 | DOI | MR | Zbl

[2] E. A. Nurminski, “Projection onto polyhedra in outer representation”, Comput. Math. Math. Phys., 48:3 (2008), 367–375 | DOI | MR | Zbl

[3] S. S. Ablaev, D. V. Makarenko, F. S. Stonyakin, M. S. Alkousa, and I. V. Baran, “Subgradient methods for non-smooth optimization problems with some relaxation of sharp minimum”, Kompyut. Issled. Model., 14:2 (2022), 473–495 (Russian)

[4] Bui H. T., Burachik R. S., Nurminski E. A., Tam M. K., Single-projection procedure for infinite dimensional convex optimization problems, Cornell Univ, Ithaca, NY, 2022, arXiv: 2210.11252 | Zbl

[5] E. A. Nurminski, “Accelerating iterative methods for projection on polyhedrons”, Dalnevostochnyi Matematicheskii Sbornik, 1, Inst. Prikl. Mat., Vladivostok, 1995, 51–62 (Russian)

[6] Dolgopolik M. V., “Exact penalty functions with multidimensional penalty parameter and adaptive penalty updates”, Optim. Lett., 16:4 (2022), 1281–1300 | DOI | MR | Zbl

[7] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Rev., 38 (1996), 367–426 | DOI | MR | Zbl

[8] Gould N. I. M., How good are projection methods for convex feasibility problems?, Comput. Optim. Appl., 40:1 (2008), 1–12 | DOI | MR | Zbl

[9] Censor Y., Chen W., Combettes P. L., Davidi R., Herman G. T., “On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints”, Comput. Optim. Appl., 51:3 (2012), 1065–1088 | DOI | MR | Zbl

[10] Johnstone P. R., Eckstein J., “Convergence rates for projective splitting”, SIAM J. Optim., 29:3 (2019), 1931–1957 | DOI | MR